Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; : e17498, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152668

RESUMO

Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.

2.
Ann Bot ; 131(1): 123-142, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029647

RESUMO

BACKGROUND AND AIMS: The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS: We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS: RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS: The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.


Assuntos
Nicotiana , Solanaceae , Nicotiana/genética , Filogenia , Solanaceae/genética , Tamanho do Genoma , Genoma de Planta , Evolução Molecular , Austrália , Poliploidia , Verduras/genética , Cromossomos de Plantas
3.
Plant J ; 111(1): 7-18, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535507

RESUMO

One of the most commonly encountered and frequently cited laboratory organisms worldwide is classified taxonomically as Nicotiana benthamiana (Solanaceae), an accession of which, typically referred to as LAB, is renowned for its unique susceptibility to a wide range of plant viruses and hence capacity to be transformed using a variety of methods. This susceptibility is the result of an insertion and consequent loss of function in the RNA-dependent RNA polymerase 1 (Rdr1) gene. However, the origin and age of LAB and the evolution of N. benthamiana across its wide distribution in Australia remain relatively underexplored. Here, we have used multispecies coalescent methods on genome-wide single nucleotide polymorphisms (SNPs) to assess species limits, phylogenetic relationships and divergence times within N. benthamiana. Our results show that the previous taxonomic concept of this species in fact comprises five geographically, morphologically and genetically distinct species, one of which includes LAB. We provide clear evidence that LAB is closely related to accessions collected further north in the Northern Territory; this species split much earlier, c. 1.1 million years ago, from their common ancestor than the other four in this clade and is morphologically the most distinctive. We also found that the Rdr1 gene insertion is variable among accessions from the northern portions of the Northern Territory. Furthermore, this long-isolated species typically grows in sheltered sites in subtropical/tropical monsoon areas of northern Australia, contradicting the previously advanced hypothesis that this species is an extremophile that has traded viral resistance for precocious development.


Assuntos
Nicotiana , RNA Polimerase Dependente de RNA , Austrália , Genômica , Filogenia , RNA Polimerase Dependente de RNA/genética , Nicotiana/genética
4.
Am J Bot ; 108(7): 1217-1233, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105148

RESUMO

PREMISE: Speciation not associated with morphological shifts is challenging to detect unless molecular data are employed. Using Sanger-sequencing approaches, the Lomatium packardiae/L. anomalum subcomplex within the larger Lomatium triternatum complex could not be resolved. Therefore, we attempt to resolve these boundaries here. METHODS: The Angiosperms353 probe set was employed to resolve the ambiguity within Lomatium triternatum species complex using 48 accessions assigned to L. packardiae, L. anomalum, or L. triternatum. In addition to exon data, 54 nuclear introns were extracted and were complete for all samples. Three approaches were used to estimate evolutionary relationships and define species boundaries: STACEY, a Bayesian coalescent-based species tree analysis that takes incomplete lineage sorting into account; ASTRAL-III, another coalescent-based species tree analysis; and a concatenated approach using MrBayes. Climatic factors, morphological characters, and soil variables were measured and analyzed to provide additional support for recovered groups. RESULTS: The STACEY analysis recovered three major clades and seven subclades, all of which are geographically structured, and some correspond to previously named taxa. No other analysis had full agreement between recovered clades and other parameters. Climatic niche and leaflet width and length provide some predictive ability for the major clades. CONCLUSIONS: The results suggest that these groups are in the process of incipient speciation and incomplete lineage sorting has been a major barrier to resolving boundaries within this lineage previously. These results are hypothesized through sequencing of multiple loci and analyzing data using coalescent-based processes.


Assuntos
Apiaceae , Teorema de Bayes , Evolução Biológica , Íntrons , Filogenia
5.
Mol Phylogenet Evol ; 158: 107008, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33160040

RESUMO

Urera Gaudich, s.l. is a pantropical genus comprising c. 35 species of trees, shrubs, and vines. It has a long history of taxonomic uncertainty, and is repeatedly recovered as polyphyletic within a poorly resolved complex of genera in the Urticeae tribe of the nettle family (Urticaceae). To provide generic delimitations concordant with evolutionary history, we use increased taxonomic and genomic sampling to investigate phylogenetic relationships among Urera and associated genera. A cost-effective two-tier genome-sampling approach provides good phylogenetic resolution by using (i) a taxon-dense sample of Sanger sequence data from two barcoding regions to recover clades of putative generic rank, and (ii) a genome-dense sample of target-enrichment data for a subset of representative species from each well-supported clade to resolve relationships among them. The results confirm the polyphyly of Urera s.l. with respect to the morphologically distinct genera Obetia, Poikilospermum and Touchardia. Afrotropic members of Urera s.l. are recovered in a clade sister to the xerophytic African shrubs Obetia; and Hawaiian ones with Touchardia, also from Hawaii. Combined with distinctive morphological differences between Neotropical and African members of Urera s.l., these results lead us to resurrect the previously synonymised name Scepocarpus Wedd. for the latter. The new species epiphet Touchardia oahuensis T.Wells & A.K. Monro is offered as a replacement name for Touchardia glabra non H.St.John, and subgenera are created within Urera s.s. to account for the two morphologically distinct Neotropical clades. This new classification minimises taxonomic and nomenclatural disruption, while more accurately reflecting evolutionary relationships within the group.


Assuntos
DNA de Plantas/química , Urticaceae/classificação , Evolução Biológica , Cloroplastos/classificação , Cloroplastos/genética , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , DNA Ribossômico/classificação , DNA Ribossômico/genética , Ecossistema , Flores/anatomia & histologia , Flores/classificação , Filogenia , Filogeografia , Análise de Sequência de DNA , Urticaceae/anatomia & histologia , Urticaceae/genética
6.
Genes (Basel) ; 11(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092894

RESUMO

Allopolyploidy is acknowledged as an important force in plant evolution. Frequent allopolyploidy in Nicotiana across different timescales permits the evaluation of genome restructuring and repeat dynamics through time. Here we use a clustering approach on high-throughput sequence reads to identify the main classes of repetitive elements following three allotetraploid events, and how these are inherited from the closest extant relatives of the maternal and paternal subgenome donors. In all three cases, there was a lack of clear maternal, cytoplasmic bias in repeat evolution, i.e., lack of a predicted bias towards maternal subgenome-derived repeats, with roughly equal contributions from both parental subgenomes. Different overall repeat dynamics were found across timescales of <0.5 (N. rustica L.), 4 (N. repanda Willd.) and 6 (N. benthamiana Domin) Ma, with nearly additive, genome upsizing, and genome downsizing, respectively. Lower copy repeats were inherited in similar abundance to the parental subgenomes, whereas higher copy repeats contributed the most to genome size change in N. repanda and N. benthamiana. Genome downsizing post-polyploidisation may be a general long-term trend across angiosperms, but at more recent timescales there is species-specific variance as found in Nicotiana.


Assuntos
Nicotiana/genética , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética , Citoplasma/metabolismo , DNA de Plantas/genética , Evolução Molecular , Tamanho do Genoma/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Herança Materna/genética , Herança Paterna/genética , Duplicações Segmentares Genômicas/genética , Especificidade da Espécie , Nicotiana/metabolismo
7.
Genes (Basel) ; 9(2)2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443885

RESUMO

Genome size is a biodiversity trait that shows staggering diversity across eukaryotes, varying over 64,000-fold. Of all major taxonomic groups, land plants stand out due to their staggering genome size diversity, ranging ca. 2400-fold. As our understanding of the implications and significance of this remarkable genome size diversity in land plants grows, it is becoming increasingly evident that this trait plays not only an important role in shaping the evolution of plant genomes, but also in influencing plant community assemblages at the ecosystem level. Recent advances and improvements in novel sequencing technologies, as well as analytical tools, make it possible to gain critical insights into the genomic and epigenetic mechanisms underpinning genome size changes. In this review we provide an overview of our current understanding of genome size diversity across the different land plant groups, its implications on the biology of the genome and what future directions need to be addressed to fill key knowledge gaps.

8.
Plant Syst Evol ; 303(8): 1013-1020, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009724

RESUMO

Nicotiana sect. Repandae is a group of four allotetraploid species originating from a single allopolyploidisation event approximately 5 million years ago. Previous phylogenetic analyses support the hypothesis of N. nudicaulis as sister to the other three species. This is concordant with changes in genome size, separating those with genome downsizing (N. nudicaulis) from those with genome upsizing (N. repanda, N. nesophila, N. stocktonii). However, a recent analysis reflecting genome dynamics of different transposable element families reconstructed greater similarity between N. nudicaulis and the Revillagigedo Island taxa (N. nesophila and N. stocktonii), thereby placing N. repanda as sister to the rest of the group. This could reflect a different phylogenetic hypothesis or the unique evolutionary history of these particular elements. Here we re-examine relationships in this group and investigate genome-wide patterns in repetitive DNA, utilising high-throughput sequencing and a genome skimming approach. Repetitive DNA clusters provide support for N. nudicaulis as sister to the rest of the section, with N. repanda sister to the two Revillagigedo Island species. Clade-specific patterns in the occurrence and abundance of particular repeats confirm the original (N. nudicaulis (N. repanda (N. nesophila + N. stocktonii))) hypothesis. Furthermore, overall repeat dynamics in the island species N. nesophila and N. stocktonii confirm their similarity to N. repanda and the distinctive patterns between these three species and N. nudicaulis. Together these results suggest that broad-scale repeat dynamics do in fact reflect evolutionary history and could be predicted based on phylogenetic distance.

9.
Genome Biol Evol ; 8(1): 161-75, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26645679

RESUMO

Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were obtained with the nhPhyML ("nonhomogeneous") algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees.


Assuntos
Besouros/genética , Heterogeneidade Genética , Genoma de Inseto , Genoma Mitocondrial , Filogenia , Animais , Besouros/classificação
10.
Ann Bot ; 115(7): 1117-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25979919

RESUMO

BACKGROUND AND AIMS: Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. METHODS: Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. KEY RESULTS: Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. CONCLUSIONS: Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators.


Assuntos
Evolução Biológica , Cor , Flores/fisiologia , Hibridização Genética , Nicotiana/fisiologia , Poliploidia , Pigmentação , Nicotiana/genética
11.
J Exp Bot ; 63(13): 4811-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22771852

RESUMO

The KNOTTED1-like homeobox (KNOX) genes are best known for maintaining a pluripotent stem-cell population in the shoot apical meristem that underlies indeterminate vegetative growth, allowing plants to adapt their development to suit the prevailing environmental conditions. More recently, the function of the KNOX gene family has been expanded to include additional roles in lateral organ development such as complex leaf morphogenesis, which has come to dominate the KNOX literature. Despite several reports implicating KNOX genes in the development of carpels and floral elaborations such as petal spurs, few authors have investigated the role of KNOX genes in flower development. Evidence is presented here of a flower-specific KNOX function in the development of the elaborate flowers of the orchid Dactylorhiza fuchsii, which have a three-lobed labellum petal with a prominent spur. Using degenerate PCR, four Class I KNOX genes (DfKN1-4) have been isolated, one from each of the four major Class I KNOX subclades and by reverse transcription PCR (RT-PCR), it is demonstrated that DfKNOX transcripts are detectable in developing floral organs such as the spur-bearing labellum and inferior ovary. Although constitutive expression of the DfKN2 transcript in tobacco produces a wide range of floral abnormalities, including serrated petal margins, extra petal tissue, and fused organs, none of the vegetative phenotypes typical of constitutive KNOX expression were produced. These data are highly suggestive of a role for KNOX expression in floral development that may be especially important in taxa with elaborate flowers.


Assuntos
Flores/crescimento & desenvolvimento , Orchidaceae/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sequência de Bases , DNA de Plantas/química , DNA de Plantas/genética , Evolução Molecular , Flores/anatomia & histologia , Flores/genética , Dados de Sequência Molecular , Orchidaceae/anatomia & histologia , Orchidaceae/genética , Especificidade de Órgãos , Fenótipo , Filogenia , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Análise de Sequência de DNA , Nicotiana/genética , Nicotiana/metabolismo
12.
Plant J ; 68(4): 703-14, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21790812

RESUMO

Spurs are tubular outgrowths of perianth organs that have evolved iteratively among angiosperms. They typically contain nectar and often strongly influence pollinator specificity, potentially mediating reproductive isolation. The identification of Antirrhinum majus mutants with ectopic petal spurs suggested that petal-spur development is dependent on the expression of KNOTTED 1-like homeobox (KNOX) genes, which are better known for their role in maintaining the shoot apical meristem. Here, we tested the role of KNOX genes in petal-spur development by isolating orthologs of the A. majus KNOX genes Hirzina (AmHirz) and Invaginata (AmIna) from Linaria vulgaris, a related species that differs from A. majus in possessing long, narrow petal spurs. We name these genes LvHirz and LvIna, respectively. Using quantitative reverse-transcription PCR, we show that LvHirz is expressed at high levels in the developing petals and demonstrate that the expression of petal-associated KNOX genes is sufficient to induce sac-like outgrowths on petals in a heterologous host. We propose a model in which KNOX gene expression during early petal-spur development promotes and maintains further morphogenetic potential of the petal, as previously described for KNOX gene function in compound leaf development. These data indicate that petal spurs could have evolved by changes in regulatory gene expression that cause rapid and potentially saltational phenotypic modifications. Given the morphological similarity of spur ontogeny in distantly related taxa, changes in KNOX gene expression patterns could be a shared feature of spur development in angiosperms.


Assuntos
Flores/crescimento & desenvolvimento , Genes Homeobox , Linaria/genética , Sequência de Aminoácidos , Flores/genética , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Linaria/crescimento & desenvolvimento , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA