Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612606

RESUMO

Indoleamine 2, 3-dioxygenase 1 (IDO; IDO1; INDO) is a rate-limiting enzyme that metabolizes the essential amino acid, tryptophan, into downstream kynurenines. Canonically, the metabolic depletion of tryptophan and/or the accumulation of kynurenine is the mechanism that defines how immunosuppressive IDO inhibits immune cell effector functions and/or facilitates T cell death. Non-canonically, IDO also suppresses immunity through non-enzymic effects. Since IDO targeting compounds predominantly aim to inhibit metabolic activity as evidenced across the numerous clinical trials currently evaluating safety/efficacy in patients with cancer, in addition to the recent disappointment of IDO enzyme inhibitor therapy during the phase III ECHO-301 trial, the issue of IDO non-enzyme effects have come to the forefront of mechanistic and therapeutic consideration(s). Here, we review enzyme-dependent and -independent IDO-mediated immunosuppression as it primarily relates to glioblastoma (GBM); the most common and aggressive primary brain tumor in adults. Our group's recent discovery that IDO levels increase in the brain parenchyma during advanced age and regardless of whether GBM is present, highlights an immunosuppressive synergy between aging-increased IDO activity in cells of the central nervous system that reside outside of the brain tumor but collaborate with GBM cell IDO activity inside of the tumor. Because of their potential value for the in vivo study of IDO, we also review current transgenic animal modeling systems while highlighting three new constructs recently created by our group. This work converges on the central premise that maximal immunotherapeutic efficacy in subjects with advanced cancer requires both IDO enzyme- and non-enzyme-neutralization, which is not adequately addressed by available IDO-targeting pharmacologic approaches at this time.


Assuntos
Neoplasias Encefálicas/imunologia , Encéfalo/enzimologia , Glioblastoma/imunologia , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Animais , Neoplasias Encefálicas/enzimologia , Modelos Animais de Doenças , Glioblastoma/enzimologia , Humanos , Neoplasias/enzimologia , Neoplasias/imunologia
2.
J Biol Chem ; 284(39): 26402-10, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19640839

RESUMO

The Ecdysoneless (Ecd) protein is required for cell-autonomous roles in development and oogenesis in Drosophila, but the function of its evolutionarily conserved mammalian orthologs is not clear. To study the cellular function of Ecd in mammalian cells, we generated Ecd(lox/lox) mouse embryonic fibroblast cells from Ecd floxed mouse embryos. Cre-mediated deletion of Ecd in Ecd(lox/lox) mouse embryonic fibroblasts led to a proliferative block due to a delay in G(1)-S cell cycle progression; this defect was reversed by the introduction of human Ecd. Loss of Ecd led to marked down-regulation of E2F target gene expression. Furthermore, Ecd directly bound to Rb at the pocket domain and competed with E2F for binding to hypophosphorylated Rb. Our results demonstrate that mammalian Ecd plays a role in cell cycle progression via the Rb-E2F pathway.


Assuntos
Proteínas de Transporte/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células , Fibroblastos/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Fibroblastos/citologia , Fase G1/fisiologia , Expressão Gênica , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fase S/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA