Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mil Med Res ; 11(1): 27, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685116

RESUMO

BACKGROUND: The channel-forming protein Pannexin1 (Panx1) has been implicated in both human studies and animal models of chronic pain, but the underlying mechanisms remain incompletely understood. METHODS: Wild-type (WT, n = 24), global Panx1 KO (n = 24), neuron-specific Panx1 KO (n = 20), and glia-specific Panx1 KO (n = 20) mice were used in this study at Albert Einstein College of Medicine. The von Frey test was used to quantify pain sensitivity in these mice following complete Freund's adjuvant (CFA) injection (7, 14, and 21 d). The qRT-PCR was employed to measure mRNA levels of Panx1, Panx2, Panx3, Cx43, Calhm1, and ß-catenin. Laser scanning confocal microscopy imaging, Sholl analysis, and electrophysiology were utilized to evaluate the impact of Panx1 on neuronal excitability and morphology in Neuro2a and dorsal root ganglion neurons (DRGNs) in which Panx1 expression or function was manipulated. Ethidium bromide (EtBr) dye uptake assay and calcium imaging were employed to investigate the role of Panx1 in adenosine triphosphate (ATP) sensitivity. ß-galactosidase (ß-gal) staining was applied to determine the relative cellular expression levels of Panx1 in trigeminal ganglia (TG) and DRG of transgenic mice. RESULTS: Global or neuron-specific Panx1 deletion markedly decreased pain thresholds after CFA stimuli (7, 14, and 21 d; P < 0.01 vs. WT group), indicating that Panx1 was positively correlated with pain sensitivity. In Neuro2a, global Panx1 deletion dramatically reduced neurite extension and inward currents compared to the WT group (P < 0.05), revealing that Panx1 enhanced neurogenesis and excitability. Similarly, global Panx1 deletion significantly suppressed Wnt/ß-catenin dependent DRG neurogenesis following 5 d of nerve growth factor (NGF) treatment (P < 0.01 vs. WT group). Moreover, Panx1 channels enhanced DRG neuron response to ATP after CFA injection (P < 0.01 vs. Panx1 KO group). Furthermore, ATP release increased Ca2+ responses in DRGNs and satellite glial cells surrounding them following 7 d of CFA treatment (P < 0.01 vs. Panx1 KO group), suggesting that Panx1 in glia also impacts exaggerated neuronal excitability. Interestingly, neuron-specific Panx1 deletion was found to markedly reduce differentiation in cultured DRGNs, as evidenced by stunted neurite outgrowth (P < 0.05 vs. Panx1 KO group; P < 0.01 vs. WT group or GFAP-Cre group), blunted activation of Wnt/ß-catenin signaling (P < 0.01 vs. WT, Panx1 KO and GFAP-Cre groups), and diminished cell excitability (P < 0.01 vs. GFAP-Cre group) and response to ATP stimulation (P < 0.01 vs. WT group). Analysis of ß-gal staining showed that cellular expression levels of Panx1 in neurons are significantly higher (2.5-fold increase) in the DRG than in the TG. CONCLUSIONS: The present study revealed that neuronal Panx1 is a prominent driver of peripheral sensitivity in the setting of inflammatory pain through cell-autonomous effects on neuronal excitability. This hyperexcitability dependence on neuronal Panx1 contrasts with inflammatory orofacial pain, where similar studies revealed a prominent role for glial Panx1. The apparent differences in Panx1 expression in neuronal and non-neuronal TG and DRG cells are likely responsible for the distinct impact of these cell types in the two pain models.


Assuntos
Conexinas , Proteínas do Tecido Nervoso , Animais , Conexinas/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Modelos Animais de Doenças , Dor/fisiopatologia , Dor/etiologia , Neurônios/metabolismo , Inflamação/fisiopatologia , Camundongos Knockout , Masculino
2.
PLoS One ; 18(12): e0295710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100403

RESUMO

Pannexins are ubiquitously expressed in human and mouse tissues. Pannexin 1 (Panx1), the most thoroughly characterized member of this family, forms plasmalemmal membrane channels permeable to relatively large molecules, such as ATP. Although human and mouse Panx1 amino acid sequences are conserved in the presently known regulatory sites involved in trafficking and modulation of the channel, differences are reported in the N- and C-termini of the protein, and the mechanisms of channel activation by different stimuli remain controversial. Here we used a neuroblastoma cell line to study the activation properties of endogenous mPanx1 and exogenously expressed hPanx1. Dye uptake and electrophysiological recordings revealed that in contrast to mouse Panx1, the human ortholog is insensitive to stimulation with high extracellular [K+] but responds similarly to activation of the purinergic P2X7 receptor. The two most frequent Panx1 polymorphisms found in the human population, Q5H (rs1138800) and E390D (rs74549886), exogenously expressed in Panx1-null N2a cells revealed that regarding P2X7 receptor mediated Panx1 activation, the Q5H mutant is a gain of function whereas the E390D mutant is a loss of function variant. Collectively, we demonstrate differences in the activation between human and mouse Panx1 orthologs and suggest that these differences may have translational implications for studies where Panx1 has been shown to have significant impact.


Assuntos
Conexinas , Células-Tronco Neurais , Humanos , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Conexinas/genética , Conexinas/metabolismo , Células-Tronco Neurais/metabolismo
3.
Cereb Cortex ; 29(8): 3482-3495, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30192926

RESUMO

Intraventricular hemorrhage (IVH) is a common complication of prematurity in infants born at 23-28 weeks of gestation. Survivors exhibit impaired growth of the cerebral cortex and neurodevelopmental sequeale, but the underlying mechanism(s) are obscure. Previously, we have shown that neocortical neurogenesis continues until at least 28 gestational weeks. This renders the prematurely born infants vulnerable to impaired neurogenesis. Here, we hypothesized that neurogenesis is impaired by IVH, and that signaling through GSK3ß, a critical intracellular kinase regulated by Wnt and other pathways, mediates this effect. These hypotheses were tested observationally in autopsy specimens from premature infants, and experimentally in a premature rabbit IVH model. Significantly, in premature infants with IVH, the number of neurogenic cortical progenitor cells was reduced compared with infants without IVH, indicating acutely decreased neurogenesis. This finding was corroborated in the rabbit IVH model, which further demonstrated reduction of upper layer cortical neurons after longer survival. Both the acute reduction of neurogenic progenitors, and the subsequent decrease of upper layer neurons, were rescued by treatment with AR-A014418, a specific inhibitor of GSK3ß. Together, these results indicate that IVH impairs late stages of cortical neurogenesis, and suggest that treatment with GSK3ß inhibitors may enhance neurodevelopment in premature infants with IVH.


Assuntos
Apoptose/efeitos dos fármacos , Hemorragia Cerebral Intraventricular/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Tiazóis/farmacologia , Ureia/análogos & derivados , Animais , Western Blotting , Estudos de Casos e Controles , Contagem de Células , Proliferação de Células , Córtex Cerebral , Hemorragia Cerebral Intraventricular/patologia , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Humanos , Imuno-Histoquímica , Lactente Extremamente Prematuro , Recém-Nascido , Antígeno Ki-67/metabolismo , Ventrículos Laterais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fator de Transcrição PAX6/metabolismo , Fosforilação , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Proteínas com Domínio T/metabolismo , Ureia/farmacologia , Substância Branca
4.
J Neurosci ; 38(34): 7378-7391, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30037831

RESUMO

Development of cortical interneurons continues until the end of human pregnancy. Premature birth deprives the newborns from the supply of maternal estrogen and a secure intrauterine environment. Indeed, preterm infants suffer from neurobehavioral disorders. This can result from both preterm birth and associated postnatal complications, which might disrupt recruitment and maturation of cortical interneurons. We hypothesized that interneuron subtypes, including parvalbumin-positive (PV+), somatostatin-positive (SST+), calretinin-positive (CalR+), and neuropeptide Y-positive (NPY+) interneurons, were recruited in the upper and lower cortical layers in a distinct manner with advancing gestational age. In addition, preterm birth would disrupt the heterogeneity of cortical interneurons, which might be reversed by estrogen treatment. These hypotheses were tested by analyzing autopsy samples from premature infants and evaluating the effect of estrogen supplementation in prematurely delivered rabbits. The PV+ and CalR+ neurons were abundant, whereas SST+ and NPY+ neurons were few in cortical layers of preterm human infants. Premature birth of infants reduced the density of PV+ or GAD67+ neurons and increased SST+ interneurons in the upper cortical layers. Importantly, 17 ß-estradiol treatment in preterm rabbits increased the number of PV+ neurons in the upper cortical layers relative to controls at postnatal day 14 (P14) and P21 and transiently reduced SST population at P14. Moreover, protein and mRNA levels of Arx, a key regulator of cortical interneuron maturation and migration, were higher in estrogen-treated rabbits relative to controls. Therefore, deficits in PV+ and excess of SST+ neurons in premature newborns are ameliorated by estrogen replacement, which can be attributed to elevated Arx levels. Estrogen replacement might enhance neurodevelopmental outcomes in extremely preterm infants.SIGNIFICANCE STATEMENT Premature birth often leads to neurodevelopmental delays and behavioral disorders, which may be ascribed to disturbances in the development and maturation of cortical interneurons. Here, we show that preterm birth in humans is associated with reduced population of parvalbumin-positive (PV+) neurons and an excess of somatostatin-expressing interneurons in the cerebral cortex. More importantly, 17 ß-estradiol treatment increased the number of PV+ neurons in preterm-born rabbits, which appears to be mediated by an elevation in the expression of Arx transcription factor. Hence the present study highlights prematurity-induced reduction in PV+ neurons in human infants and reversal in their population by estrogen replacement in preterm rabbits. Because preterm birth drops plasma estrogen level 100-fold, estrogen replacement in extremely preterm infants might improve their developmental outcome and minimize neurobehavioral disorders.


Assuntos
Córtex Cerebral/patologia , Estradiol/farmacologia , Doenças do Prematuro/patologia , Interneurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Calbindina 2/análise , Contagem de Células , Feminino , Idade Gestacional , Glutamato Descarboxilase/análise , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Interneurônios/química , Interneurônios/classificação , Interneurônios/fisiologia , Masculino , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuropeptídeo Y/análise , Parvalbuminas/análise , Coelhos , Somatostatina/análise , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
5.
J Neurosci ; 38(5): 1100-1113, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29246927

RESUMO

Many Preterm-born children suffer from neurobehavioral disorders. Premature birth terminates the hypoxic in utero environment and supply of maternal hormones. As the production of interneurons continues until the end of pregnancy, we hypothesized that premature birth would disrupt interneuron production and that restoration of the hypoxic milieu or estrogen treatment might reverse interneuron generation. To test these hypotheses, we compared interneuronal progenitors in the medial ganglionic eminences (MGEs), lateral ganglionic eminences (LGEs), and caudal ganglionic eminences (CGEs) between preterm-born [born on embryonic day (E) 29; examined on postnatal day (D) 3 and D7] and term-born (born on E32; examined on D0 and D4) rabbits at equivalent postconceptional ages. We found that both total and cycling Nkx2.1+, Dlx2+, and Sox2+ cells were more abundant in the MGEs of preterm rabbits at D3 compared with term rabbits at D0, but not in D7 preterm relative to D4 term pups. Total Nkx2.1+ progenitors were also more numerous in the LGEs of preterm pups at D3 compared with term rabbits at D0. Dlx2+ cells in CGEs were comparable between preterm and term pups. Simulation of hypoxia by dimethyloxalylglycine treatment did not affect the number of interneuronal progenitors. However, estrogen treatment reduced the density of total and proliferating Nkx2.1+ and Dlx2+ cells in the MGEs and enhanced Ascl1 transcription factor. Estrogen treatment also reduced Ki67, c-Myc, and phosphorylation of retinoblastoma protein, suggesting inhibition of the G1-to-S phase transition. Hence, preterm birth disrupts interneuron neurogenesis in the MGE and estrogen treatment reverses interneuron neurogenesis in preterm newborns by cell-cycle inhibition and elevation of Ascl1. We speculate that estrogen replacement might partially restore neurogenesis in human premature infants.SIGNIFICANCE STATEMENT Prematurity results in developmental delays and neurobehavioral disorders, which might be ascribed to disturbances in the development of cortical interneurons. Here, we show that preterm birth disrupts interneuron neurogenesis in the medial ganglionic eminence (MGE) and, more importantly, that estrogen treatment reverses this perturbation in the population of interneuron progenitors in the MGE. The estrogen seems to restore neurogenesis by inhibiting the cell cycle and elevating Ascl1 expression. As preterm birth causes plasma estrogen level to drop 100-fold, the estrogen replacement in preterm infants is physiological. We speculate that estrogen replacement might ameliorate disruption in production of interneurons in human premature infants.


Assuntos
Animais Recém-Nascidos/fisiologia , Estrogênios/uso terapêutico , Interneurônios/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Feminino , Gânglios/citologia , Gânglios/crescimento & desenvolvimento , Gânglios/metabolismo , Proteínas de Homeodomínio/metabolismo , Hipóxia Encefálica/induzido quimicamente , Hipóxia Encefálica/patologia , Antígeno Ki-67/metabolismo , Células-Tronco Neurais/metabolismo , Gravidez , Nascimento Prematuro , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Coelhos , Fatores de Transcrição SOXB1/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo
6.
J Neurosci ; 36(3): 872-89, 2016 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791217

RESUMO

Intraventricular hemorrhage (IVH) in premature infants results in inflammation, arrested oligodendrocyte progenitor cell (OPC) maturation, and reduced myelination of the white matter. Hyaluronan (HA) inhibits OPC maturation and complexes with the heavy chain (HC) of glycoprotein inter-α-inhibitor to form pathological HA (HC-HA complex), which exacerbates inflammation. Therefore, we hypothesized that IVH would result in accumulation of HA, and that either degradation of HA by hyaluronidase treatment or elimination of HCs from pathological HA by HA oligosaccharide administration would restore OPC maturation, myelination, and neurological function in survivors with IVH. To test these hypotheses, we used the preterm rabbit model of glycerol-induced IVH and analyzed autopsy samples from premature infants. We found that total HA levels were comparable in both preterm rabbit pups and human infants with and without IVH, but HA receptors--CD44, TLR2, TLR4--were elevated in the forebrain of both humans and rabbits with IVH. Hyaluronidase treatment of rabbits with IVH reduced CD44 and TLR4 expression, proinflammatory cytokine levels, and microglia infiltration. It also promoted OPC maturation, myelination, and neurological recovery. HC-HA and tumor necrosis factor-stimulated gene-6 were elevated in newborns with IVH; and depletion of HC-HA levels by HA oligosaccharide treatment reduced inflammation and enhanced myelination and neurological recovery in rabbits with IVH. Hence, hyaluronidase or HA oligosaccharide treatment represses inflammation, promotes OPC maturation, and restores myelination and neurological function in rabbits with IVH. These therapeutic strategies might improve the neurological outcome of premature infants with IVH. Significance statement: Approximately 12,000 premature infants develop IVH every year in the United States, and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The onset of IVH induces inflammation of the periventricular white matter, which results in arrested maturation of OPCs and myelination failure. HA is a major component of the extracellular matrix of the brain, which regulates inflammation through CD44 and TLR2/4 receptors. Here, we show two mechanism-based strategies that effectively enhanced myelination and neurological recovery in preterm rabbit model of IVH. First, degrading HA by hyaluronidase treatment reduced CD44 and TLR4 expression, proinflammatory cytokines, and microglial infiltration, as well as promoted oligodendrocyte maturation and myelination. Second, intraventricular injection of HA oligosaccharide reduced inflammation and enhanced myelination, conceivably by depleting HC-HA levels.


Assuntos
Hemorragia Cerebral/metabolismo , Ventrículos Cerebrais/metabolismo , Ácido Hialurônico/biossíntese , Hialuronoglucosaminidase/biossíntese , Oligossacarídeos/biossíntese , Recuperação de Função Fisiológica/fisiologia , Animais , Animais Recém-Nascidos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/patologia , Feminino , Humanos , Ácido Hialurônico/administração & dosagem , Recém-Nascido , Injeções Intraventriculares , Masculino , Oligossacarídeos/administração & dosagem , Gravidez , Coelhos , Recuperação de Função Fisiológica/efeitos dos fármacos
7.
Mol Pharmacol ; 83(1): 22-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23012257

RESUMO

4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB) was identified as the selective blocker of volume-regulated anion channels (VRAC). VRAC are permeable to small inorganic and organic anions, including the excitatory neurotransmitter glutamate. In recent years DCPIB has been increasingly used for probing the physiologic and pathologic roles of VRAC and was found to potently suppress pathologic glutamate release in cerebral ischemia. Because ischemic glutamate release can be mediated by a plethora of mechanisms, in this study we explored the selectivity of DCPIB toward the majority of previously identified glutamate transporters and permeability pathways. l-[(3)H]glutamate, d-[(3)H]aspartate, and l-[(14)C]cystine were used to trace amino acid release and uptake. We found that in addition to its well-characterized effect on VRAC, DCPIB potently inhibited glutamate release via connexin hemichannels and glutamate uptake via the glutamate transporter GLT-1 in rat glial cells. In contrast, DCPIB had no direct effect on vesicular glutamate release from rat brain synaptosomes or the cystine/glutamate exchange in astrocytes. The compound did not affect the astrocytic glutamate transporter GLAST, nor did it block glutamate release via the P2X(7)/pannexin permeability pathway. The ability of DCPIB to directly block connexin hemichannels was confirmed using a gene-specific siRNA knockdown approach. Overall, our data demonstrate that DCPIB influences several glutamate transport pathways and that its effects on VRAC in vivo should be verified using additional pharmacological controls.


Assuntos
Sistemas de Transporte de Aminoácidos/fisiologia , Astrócitos/efeitos dos fármacos , Ciclopentanos/farmacologia , Ácido Glutâmico/metabolismo , Indanos/farmacologia , Microglia/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/fisiologia , Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos , Animais , Astrócitos/metabolismo , Transporte Biológico , Células Cultivadas , Córtex Cerebral/citologia , Conexinas/antagonistas & inibidores , Conexinas/fisiologia , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 1 de Aminoácido Excitatório/fisiologia , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 2 de Aminoácido Excitatório/fisiologia , Microglia/metabolismo , Permeabilidade , Cultura Primária de Células , Ratos , Receptores Purinérgicos P2X7/fisiologia , Sinaptossomos/metabolismo
8.
Antioxid Redox Signal ; 17(7): 992-1012, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22339371

RESUMO

SIGNIFICANCE: Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells. RECENT ADVANCES: Recent work in the field focused on the ability of NO and RNS to yield protein modifications, including the S-nitrosation of cysteine residues, which, in many instances, impact cellular functions and viability. CRITICAL ISSUES: The vast majority of neuropathological studies focus on the loss of cell viability, but nitrosative stress may also strongly impair the functions of neuronal processes: axonal projections and dendritic trees. The functional integrity of axons and dendrites critically depends on local metabolism and effective delivery of metabolic enzymes and organelles. Here, we summarize the existing literature describing the effects of nitrosative stress on the major pathways of energetic metabolism: glycolysis, tricarboxylic acid cycle, and mitochondrial respiration, with the emphasis on modifications of protein thiols. FUTURE DIRECTIONS: We propose that axons and dendrites are highly vulnerable to nitrosative stress because of their low glycolytic capacity and high dependence on timely delivery of metabolic enzymes and organelles from the cell body. Thus, supplementation with the end products of glycolysis, pyruvate or lactate, may help preserve metabolism in distal neuronal processes and protect or restore synaptic function in the ailing brain.


Assuntos
Nitrosação/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Humanos , Óxido Nítrico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo
9.
J Neurosci Res ; 87(6): 1400-11, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19115407

RESUMO

Global ischemia was induced in gerbil by bilateral occlusion of the common carotid arteries for 5 min. Sodium ionophore monensin or sodium channel blocker tetrodotoxin (TTX) was administered at doses of 10 micorg/kg, i.p., 30 min before ischemia induction; the dose was repeated after 22 hr. Subsequently, brain infarct occurred, determined at 24 hr after occlusion. Large, well-demarcated infarcts were observed in both hemispheres, an important observation because it critically influences the interpretation of the data. Because nitric oxide (NO) production is thought to be related to ischemic neuronal damage, we examined increases in Ca(2+) influx, which lead to the activation of nitric oxide synthase (NOS). Then we evaluated the contributions of neuronal NOS, endothelial NOS, and inducible NOS to NO production in brain cryosections. The cytosolic release of apoptogenic molecules like cytochrome c and p53 were confirmed after 24 hr of reflow. TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) labeling detected the apoptotic cells, which were confirmed in neuron-rich cell populations. After 24 hr, all the ischemic changes were amplified by monensin and significantly attenuated by TTX treatment. Additionally, the nesting behavior and histological outcomes were examined after 7 day of reflow. The neuronal damage in the hippocampal area and significant decrease in nesting scores were observed with monensin treatment and reduced by TTX pretreatment after day 7 of reflow. To our knowledge, this report is the first to highlight the involvement of the voltage-sensitive Na(+) channel in possibly regulating in part NO system and apoptosis in a cytochrome c-dependent manner in global ischemia in the gerbil, and thus warrants further investigation.


Assuntos
Apoptose , Isquemia Encefálica/patologia , Encéfalo/patologia , Monensin/farmacologia , Neurônios/fisiologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Citocromos c/metabolismo , Fragmentação do DNA , Células Endoteliais/fisiologia , Gerbillinae , Hipocampo/patologia , Hipocampo/fisiopatologia , Marcação In Situ das Extremidades Cortadas , Ionóforos/farmacologia , Masculino , Óxido Nítrico Sintase/metabolismo , Bloqueadores dos Canais de Sódio/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo
10.
BMC Complement Altern Med ; 8: 55, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18826584

RESUMO

BACKGROUND: Among the naturally occurring compounds, turmeric from the dried rhizome of the plant Curcuma longa has long been used extensively as a condiment and a household remedy all over Southeast Asia. Turmeric contains essential oil, yellow pigments (curcuminoids), starch and oleoresin. The present study was designed for investigating the neuroprotective efficacy and the time window for effective therapeutic use of Curcuma oil (C. oil). METHOD: In the present study, the effect of post ischemic treatment of C.oil after ischemia induced by occlusion of the middle cerebral artery in the rat was observed. C.oil (500 mg/kg body wt) was given 4 hrs post ischemia. The significant effect on lesion size as visualized by using diffusion-weighted magnetic resonance imaging and neuroscore was still evident when treatment was started 4 hours after insult. Animals were assessed for behavioral deficit scores after 5 and 24 hours of ischemia. Subsequently, the rats were sacrificed for evaluation of infarct and edema volumes and other parameters. RESULTS: C.oil ameliorated the ischemia induced neurological functional deficits and the infarct and edema volumes measured after 5 and 24 hrs of ischemia. After 24 hrs, immunohistochemical and Western blot analysis demonstrated that the expression of iNOS, cytochrome c and Bax/Bcl-2 were altered after the insult, and antagonized by treatment with C.oil. C.oil significantly reduced nitrosative stress, tended to correct the decreased mitochondrial membrane potential, and also affected caspase-3 activation finally apoptosis. CONCLUSION: Here we demonstrated that iNOS-derived NO produced during ischemic injury was crucial for the up-regulation of ischemic injury targets. C.oil down-regulates these targets this coincided with an increased survival rate of neurons.


Assuntos
Apoptose/efeitos dos fármacos , Curcuma/química , Infarto da Artéria Cerebral Média/tratamento farmacológico , Embolia Intracraniana/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Óleos de Plantas/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Ativação Enzimática/efeitos dos fármacos , Infarto da Artéria Cerebral Média/metabolismo , Embolia Intracraniana/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Ratos , Ratos Sprague-Dawley
11.
Nitric Oxide ; 19(1): 1-11, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18485279

RESUMO

The antioxidant activity of C.oil in cerebral stroke has been reported earlier. We have attempted here to clarify the mechanisms underlying the neuroprotection against experimental cerebral ischemia by Curcuma oil (C.oil), isolated from the rhizomes of Curcuma longa. C.oil (250 mg/kg i.p.) was given 30 min before focal ischemia in rats caused by occlusion of the middle cerebral artery (1h of occlusion, 24h of reflow). Ischemia, leads to elevation in [Ca(2+)] this sets into motion a cascades of ischemic injury which was attenuated by C.oil. C.oil reduced post-ischemic brain neutrophil infiltration in the ischemic area, controlled tissue NOx levels and the neuronal levels of nitric oxide, peroxynitrite and reactive oxygen species when measured after 24h of reflow. Double immunofluorescence staining analysis and Western immunoblot analysis with C.oil treatment showed that the expression of nitric oxide synthase (NOS) isoforms were decreased significantly compared to the untreated ischemia group. Ischemia is associated with increased in TUNEL (TdT-mediated dUTP nick-end labeling) positive cells in brain sections indicating DNA fragmentation. The C.oil treated group showed a significant decrease in numbers of apoptotic cells compared to the untreated ischemia group, as seen in the flowcytometric analysis of the neurons. Results of immunohistochemistry and Western immunoblot indicate that C.oil suppressed the elevated protein level of Bax, and aided mitochondrial translocation and activation of Bcl-2 by altered mitochondrial membrane potential. It also inhibits the cytosolic release of apoptogenic molecules like cytochrome c, inhibits the activation of caspase-3 and the expression of p53 ultimately inhibiting apoptosis. Our observations suggest that high levels of NO generated by NOS isoforms are partially responsible for exacerbating the neuronal damage induced by MCAo by intraluminal filament.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Curcuma/química , Neurônios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óleos Voláteis/uso terapêutico , Animais , Western Blotting , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Grupo dos Citocromos c/metabolismo , Fragmentação do DNA , Citometria de Fluxo , Regulação da Expressão Gênica , Marcação In Situ das Extremidades Cortadas , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
12.
Neurochem Res ; 33(9): 1672-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17955367

RESUMO

Turmeric is a source of numerous aromatic compounds isolated from powdered rhizomes of Curcuma longa Linn. The constituents are present as volatile oil, the Curcuma oil (C.oil), semi-solid oleoresins and non-volatile compounds such as curcumin. A rapidly expanding body of data provides evidence of the anti-cancer action of Curcumin, and most importantly in the present context, its neuroprotective activity. Almost nothing is known about such activity of C.oil. We report that C.oil (500 mg Kg(-1) i.p.) 15 min before 2 h middle cerebral artery occlusion (MCAo) followed by 24 h reflow in rats significantly diminished infarct volume, improved neurological deficit and counteracted oxidative stress. The percent ischemic lesion volume on diffusion-weighted imaging was significantly attenuated. Mitochondrial membrane potential, reactive oxygen species, peroxynitrite levels, caspase-3 activities leading to delayed neuronal death were significantly inhibited after treatment with C.oil. These results suggest that the neuroprotective activity of C.oil against cerebral ischemia is associated with its antioxidant activities and further; there is attenuation of delayed neuronal death via a caspase-dependent pathway. C.oil appears to be a promising agent not only for the treatment of cerebral stroke, but also for the treatment of other disorders associated with oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Curcuma/química , Ataque Isquêmico Transitório/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas , Animais , Antioxidantes/metabolismo , Comportamento Animal/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Infarto da Artéria Cerebral Média , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Malondialdeído/metabolismo , Ayurveda , Atividade Motora/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Testes Neuropsicológicos , Oxirredução , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA