Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mod Pathol ; 36(3): 100049, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36788098

RESUMO

The repair of DNA double-stranded breaks relies on the homologous recombination repair pathway and is critical to cell function. However, this pathway can be lost in some cancers such as breast, ovarian, endometrial, pancreatic, and prostate cancers. Cancer cells with homologous recombination deficiency (HRD) are sensitive to targeted inhibition of poly-ADP ribose polymerase (PARP), a key component of alternative backup DNA repair pathways. Identifying patients with cancer with HRD biomarkers allows the identification of patients likely to benefit from PARP inhibitor therapies. In this study, we describe the causes of HRD, the underlying molecular changes resulting from HRD that form the basis of different molecular HRD assays, and discuss the issues around their clinical use. This overview is directed toward practicing pathologists wishing to be informed of this new predictive biomarker, as PARP inhibitors are increasingly used in standard care settings.


Assuntos
Neoplasias Ovarianas , Reparo de DNA por Recombinação , Feminino , Humanos , Neoplasias Ovarianas/genética , Recombinação Homóloga , Patologistas , Reparo do DNA
2.
BMC Med Genomics ; 15(1): 70, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346197

RESUMO

BACKGROUND: Next generation sequencing for oncology patient management is now routine in clinical pathology laboratories. Although wet lab, sequencing and pipeline tasks are largely automated, the analysis of variants for clinical reporting remains largely a manual task. The increasing volume of sequencing data and the limited availability of genetic experts to analyse and report on variants in the data is a key scalability limit for molecular diagnostics. METHOD: To determine the impact and size of the issue, we examined the longitudinally compiled genetic variants from 48,036 cancer patients over a six year period in a large cancer hospital from ten targeted cancer panel tests in germline, solid tumour and haematology contexts using hybridization capture and amplicon assays. This testing generated 24,168,398 sequenced variants of which 23,255 (8214 unique) were clinically reported. RESULTS: Of the reported variants, 17,240 (74.1%) were identified in more than one assay which allowed curated variant data to be reused in later reports. The remainder, 6015 (25.9%) were not subsequently seen in later assays and did not provide any reuse benefit. The number of new variants requiring curation has significantly increased over time from 1.72 to 3.73 variants per sample (292 curated variants per month). Analysis of the 23,255 variants reported, showed 28.6% (n = 2356) were not present in common public variant resources and therefore required de novo curation. These in-house only variants were enriched for indels, tumour suppressor genes and from solid tumour assays. CONCLUSION: This analysis highlights the significant percentage of variants not present within common public variant resources and the level of non-recurrent variants that consequently require greater curation effort. Many of these variants are unique to a single patient and unlikely to appear in other patients reflecting the personalised nature of cancer genomics. This study depicts the real-world situation for pathology laboratories faced with curating increasing numbers of low-recurrence variants while needing to expedite the process of manual variant curation. In the absence of suitably accurate automated methods, new approaches are needed to scale oncology diagnostics for future genetic testing volumes.


Assuntos
Neoplasias , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Patologia Molecular , Medicina de Precisão/métodos
3.
Pathology ; 54(3): 249-253, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35153070

RESUMO

Cancer immunotherapy holds great promise and has shown durable responses in many patients; however, these responses are not uniform in all patients or all tumour streams. There is an ongoing clinical need for objective diagnostic biomarkers to identify patients that will respond to immunotherapies. Tumour mutational burden (TMB) is a diagnostic biomarker that can stratify cancer patients for response to immune checkpoint inhibitor therapies. It is commonly defined as the average number of somatic mutations per megabase in a tumour exome. Here we describe the TMB biomarker, how it is determined, its underlying molecular basis, the relationship to neoantigens and the issues around its clinical use. This overview is directed toward practising pathologists wishing to be informed of this predictive biomarker.


Assuntos
Neoplasias , Biomarcadores Tumorais/genética , Humanos , Imunoterapia , Mutação , Neoplasias/diagnóstico , Neoplasias/genética
4.
BMC Bioinformatics ; 18(1): 555, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246107

RESUMO

BACKGROUND: High throughput sequencing requires bioinformatics pipelines to process large volumes of data into meaningful variants that can be translated into a clinical report. These pipelines often suffer from a number of shortcomings: they lack robustness and have many components written in multiple languages, each with a variety of resource requirements. Pipeline components must be linked together with a workflow system to achieve the processing of FASTQ files through to a VCF file of variants. Crafting these pipelines requires considerable bioinformatics and IT skills beyond the reach of many clinical laboratories. RESULTS: Here we present Canary, a single program that can be run on a laptop, which takes FASTQ files from amplicon assays through to an annotated VCF file ready for clinical analysis. Canary can be installed and run with a single command using Docker containerization or run as a single JAR file on a wide range of platforms. Although it is a single utility, Canary performs all the functions present in more complex and unwieldy pipelines. All variants identified by Canary are 3' shifted and represented in their most parsimonious form to provide a consistent nomenclature, irrespective of sequencing variation. Further, proximate in-phase variants are represented as a single HGVS 'delins' variant. This allows for correct nomenclature and consequences to be ascribed to complex multi-nucleotide polymorphisms (MNPs), which are otherwise difficult to represent and interpret. Variants can also be annotated with hundreds of attributes sourced from MyVariant.info to give up to date details on pathogenicity, population statistics and in-silico predictors. CONCLUSIONS: Canary has been used at the Peter MacCallum Cancer Centre in Melbourne for the last 2 years for the processing of clinical sequencing data. By encapsulating clinical features in a single, easily installed executable, Canary makes sequencing more accessible to all pathology laboratories. Canary is available for download as source or a Docker image at https://github.com/PapenfussLab/Canary under a GPL-3.0 License.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Bases de Dados Genéticas , Variação Genética , Humanos
5.
Genome Med ; 9(1): 38, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28438193

RESUMO

BACKGROUND: The increasing affordability of DNA sequencing has allowed it to be widely deployed in pathology laboratories. However, this has exposed many issues with the analysis and reporting of variants for clinical diagnostic use. Implementing a high-throughput sequencing (NGS) clinical reporting system requires a diverse combination of capabilities, statistical methods to identify variants, global variant databases, a validated bioinformatics pipeline, an auditable laboratory workflow, reproducible clinical assays and quality control monitoring throughout. These capabilities must be packaged in software that integrates the disparate components into a useable system. RESULTS: To meet these needs, we developed a web-based application, PathOS, which takes variant data from a patient sample through to a clinical report. PathOS has been used operationally in the Peter MacCallum Cancer Centre for two years for the analysis, curation and reporting of genetic tests for cancer patients, as well as the curation of large-scale research studies. PathOS has also been deployed in cloud environments allowing multiple institutions to use separate, secure and customisable instances of the system. Increasingly, the bottleneck of variant curation is limiting the adoption of clinical sequencing for molecular diagnostics. PathOS is focused on providing clinical variant curators and pathology laboratories with a decision support system needed for personalised medicine. While the genesis of PathOS has been within cancer molecular diagnostics, the system is applicable to NGS clinical reporting generally. CONCLUSIONS: The widespread availability of genomic sequencers has highlighted the limited availability of software to support clinical decision-making in molecular pathology. PathOS is a system that has been developed and refined in a hospital laboratory context to meet the needs of clinical diagnostics. The software is available as a set of Docker images and source code at https://github.com/PapenfussLab/PathOS .


Assuntos
Serviços de Laboratório Clínico , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Software , Humanos , Neoplasias/diagnóstico , Medicina de Precisão , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA