Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884437

RESUMO

N-acetylcysteine (NAC), often used as an antioxidant-scavenging reactive oxygen species (ROS) in vitro, was recently shown to increase the cytotoxicity of other compounds through ROS-dependent and ROS-independent mechanisms. In this study, NAC itself was found to induce extensive ROS production in human leukemia HL-60 and U937 cells. The cytotoxicity depends on ROS-modulating enzyme expression. In HL-60 cells, NAC activated NOX2 to produce superoxide (O2•-). Its subsequent conversion into H2O2 by superoxide dismutase 1 and 3 (SOD1, SOD3) and production of ClO- from H2O2 by myeloperoxidase (MPO) was necessary for cell death induction. While the addition of extracellular SOD potentiated NAC-induced cell death, extracellular catalase (CAT) prevented cell death in HL-60 cells. The MPO inhibitor partially reduced the number of dying HL-60 cells. In U937 cells, the weak cytotoxicity of NAC is probably caused by lower expression of NOX2, SOD1, SOD3, and by the absence of MOP expression. However, even here, the addition of extracellular SOD induced cell death in U937 cells, and this effect could be reversed by extracellular CAT. NAC-induced cell death exhibited predominantly apoptotic features in both cell lines. Conclusions: NAC itself can induce extensive production of O2•- in HL-60 and U937 cell lines. The fate of the cells then depends on the expression of enzymes that control the formation and conversion of ROS: NOX, SOD, and MPO. The mode of cell death in response to NAC treatment bears apoptotic and apoptotic-like features in both cell lines.


Assuntos
Acetilcisteína/farmacologia , Leucemia/genética , NADPH Oxidase 2/genética , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/genética , Superóxido Dismutase/genética , Catalase/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células U937
2.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573093

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and has a poor prognosis. Complex genetic alterations and the protective effect of the blood-brain barrier (BBB) have so far hampered effective treatment. Here, we investigated the cytotoxic effects of heat shock protein 90 (HSP90) inhibitors, geldanamycin (GDN) and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), in a panel of glioma tumor cell lines with various genetic alterations. We also assessed the ability of the main drug transporters, ABCB1 and ABCG2, to efflux GDN and 17-AAG. We found that GDN and 17-AAG induced extensive cell death with the morphological and biochemical hallmarks of apoptosis in all studied glioma cell lines at sub-micro-molar and nanomolar concentrations. Moderate efflux efficacy of GDN and 17-AAG mediated by ABCB1 was observed. There was an insignificant and low efflux efficacy of GDN and 17-AAG mediated by ABCG2. Conclusion: GDN and 17-AAG, in particular, exhibited strong proapoptotic effects in glioma tumor cell lines irrespective of genetic alterations. GDN and 17-AAG appeared to be weak substrates of ABCB1 and ABCG2. Therefore, the BBB would compromise their cytotoxic effects only partially. We hypothesize that GBM patients may benefit from 17-AAG either as a single agent or in combination with other drugs.

3.
Biomolecules ; 10(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947839

RESUMO

Lysosomal sequestration of anticancer therapeutics lowers their cytotoxic potential, reduces drug availability at target sites, and contributes to cancer resistance. Only recently has it been shown that lysosomal sequestration of weak base drugs induces lysosomal biogenesis mediated by activation of transcription factor EB (TFEB) which, in turn, enhances their accumulation capacity, thereby increasing resistance to these drugs. Here, we addressed the question of whether lysosomal biogenesis is the only mechanism that increases lysosomal sequestration capacity. We found that lysosomal sequestration of some tyrosine kinase inhibitors (TKIs), gefitinib (GF) and imatinib (IM), induced expansion of the lysosomal compartment. However, an expression analysis of lysosomal genes, including lysosome-associated membrane proteins 1, 2 (LAMP1, LAMP2), vacuolar ATPase subunit B2 (ATP6V1B2), acid phosphatase (ACP), and galactosidase beta (GLB) controlled by TFEB, did not reveal increased expression. Instead, we found that both studied TKIs, GF and IM, induced lysosomal fusion which was dependent on nicotinic acid adenine dinucleotide phosphate (NAADP) mediated Ca2+signaling. A theoretical analysis revealed that lysosomal fusion is sufficient to explain the enlargement of lysosomal sequestration capacity. In conclusion, we demonstrated that extracellular TKIs, GF and IM, induced NAADP/Ca2+ mediated lysosomal fusion, leading to enlargement of the lysosomal compartment with significantly increased sequestration capacity for these drugs without apparent lysosomal biogenesis.


Assuntos
Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Antineoplásicos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Biogênese de Organelas , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
4.
Biomolecules ; 9(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683643

RESUMO

The Lysosomal sequestration of weak-base anticancer drugs is one putative mechanism for resistance to chemotherapy but it has never been directly proven. We addressed the question of whether the lysosomal sequestration of tyrosine kinase inhibitors (TKIs) itself contributes to the drug resistance in vitro. Our analysis indicates that lysosomal sequestration of an anticancer drug can significantly reduce the concentration at target sites, only when it simultaneously decreases its extracellular concentration due to equilibrium, since uncharged forms of weak-base drugs freely diffuse across cellular membranes. Even though the studied TKIs, including imatinib, nilotinib, and dasatinib, were extensively accumulated in the lysosomes of cancer cells, their sequestration was insufficient to substantially reduce the extracellular drug concentration. Lysosomal accumulation of TKIs also failed to affect the Bcr-Abl signaling. Cell pre-treatment with sunitinib significantly enhanced the lysosomal accumulation of the TKIs used; however, without apparent lysosomal biogenesis. Importantly, even increased lysosomal sequestration of TKIs neither decreased their extracellular concentrations nor affected the sensitivity of Bcr-Abl to TKIs. In conclusion, our results clearly show that the lysosomal sequestration of TKIs failed to change their concentrations at target sites, and thus, can hardly contribute to drug resistance in vitro.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Humanos , Células K562 , Sunitinibe/farmacologia
5.
J Cell Biochem ; 120(10): 18406-18414, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209929

RESUMO

The interaction between ABCB1 transporter and its substrates takes place in cell membranes but the available data precludes quantitative analysis of the interaction between transporter and substrate molecules. Further, the amount of transporter is usually expressed as a number of ABCB1 molecules per cell. In contrast, the substrate concentration in cell membranes is estimated by determination of substrate-lipid partition coefficient, as examples. In this study, we demonstrate an approach, which enables us to estimate the concentration of ABCB1 molecules within plasma membranes. For this purpose, human leukemia K562 cells with varying expression levels of ABCB1 were used: drug selected K562/Dox and K562/HHT cells with very high transporter expression, and K562/DoxDR2, K562/DoxDR1, and K562/DoxDR05 cells with gradually decreased expression of ABCB1 derived from K562/Dox cells using RNA interference technology. First, we determined the absolute amount of ABCB1 in cell lysates using immunoblotting and recombinant ABCB1 as a standard. We then determined the relative portion of transporter residing in the plasma membrane using immunohistochemistry in nonpermeabilized and permeabilized cells. These results enabled us to estimate the concentration of ABCB1 in the plasma membrane in resistant cells. The ABCB1 concentrations in the plasma membrane of drug selected K562/Dox and K562/HHT cells containing the highest amount of transporter reached millimolar levels. Concentrations of ABCB1 in the plasma membrane of resistant K562/DoxDR2, K562/DoxDR1, and K562/DoxDR05 cells with lower transporter expression were proportionally decreased.


Assuntos
Membrana Celular/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Western Blotting , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Imunofluorescência , Humanos , Células K562 , Interferência de RNA
6.
Int J Mol Sci ; 18(11)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088066

RESUMO

The synthetic curcumin analogue, 3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone (EF-24), suppresses NF-κB activity and exhibits antiproliferative effects against a variety of cancer cells in vitro. Recently, it was reported that EF-24-induced apoptosis was mediated by a redox-dependent mechanism. Here, we studied the effects of N-acetylcysteine (NAC) on EF-24-induced cell death. We also addressed the question of whether the main drug transporters, ABCB1 and ABCG2, affect the cytotoxic of EF-24. We observed that EF-24 induced cell death with apoptotic hallmarks in human leukemia K562 cells. Importantly, the loss of cell viability was preceded by production of reactive oxygen species (ROS), and by a decrease of reduced glutathione (GSH). However, neither ROS production nor the decrease in GSH predominantly contributed to the EF-24-induced cell death. We found that EF-24 formed an adduct with GSH, which is likely the mechanism contributing to the decrease of GSH. Although NAC abrogated ROS production, decreased GSH and prevented cell death, its protective effect was mainly due to a rapid conversion of intra- and extra-cellular EF-24 into the EF-24-NAC adduct without cytotoxic effects. Furthermore, we found that neither overexpression of ABCB1 nor ABCG2 reduced the antiproliferative effects of EF-24. In conclusion, a redox-dependent-mediated mechanism only marginally contributes to the EF-24-induced apoptosis in K562 cells. The main mechanism of NAC protection against EF-24-induced apoptosis is conversion of cytotoxic EF-24 into the noncytotoxic EF-24-NAC adduct. Neither ABCB1 nor ABCG2 mediated resistance to EF-24.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/farmacologia , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo , Piperidonas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Acetilcisteína/metabolismo , Linhagem Celular Tumoral , Glutationa/metabolismo , Humanos , Leucemia/metabolismo , Proteínas de Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Chem Biol Interact ; 273: 171-179, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28623111

RESUMO

Recently, it has been suggested that imatinib (IM) and nilotinib (NIL) could be studied beyond their original application, as inhibitors of the drug efflux pump ABCB1 (P-glycoprotein, MDR1). Since the reversal of ABCB1-mediated resistance has never been successfully demonstrated in the clinic, we addressed the question of whether IM and NIL may actually serve as efficient inhibitors of ABCB1. Here we define an efficient inhibitor as a compound that achieves full (90-100%) reversal of drug efflux at a concentration that does not exhibit significant off-target toxicity in vitro. In this study, human leukemia K562 cells expressing various levels of ABCB1 were used. We observed that cells expressing higher ABCB1 levels required higher concentrations of IM and NIL to achieve full reversal of drug efflux. Among the well-known ABCB1 inhibitors, a similar effect was found for cyclosporin A (CsA) but not for zosuquidar. IM was efficient only in cells with the low and moderate ABCB1 expression at high concentrations that were cytotoxic in the absence of Bcr-Abl. In contrast, NIL was as efficient an inhibitor of ABCB1 as CsA. Low and moderate expression levels of ABCB1 could be efficiently inhibited by NIL concentrations without cytotoxic effects in the absence of Bcr-Abl. However, high expression levels of ABCB1 required higher NIL concentrations with off-target cytotoxic effects. In conclusion, application of NIL, but not of IM, in clinics is promising, however, only in cells with low ABCB1 expression levels. We hypothesize that some patients may benefit from an inhibitor exhibiting an ABCB1 expression-dependent effect.


Assuntos
Mesilato de Imatinib/farmacologia , Pirimidinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Pharm Dev Technol ; 22(2): 138-147, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26401959

RESUMO

CONTEXT: The preparation of liquisolid systems (LSS) represents a promising method for enhancing a dissolution rate and bioavailability of poorly soluble drugs. The release of the drug from LSS tablets is affected by many factors, including the disintegration time. OBJECTIVE: The evaluation of differences among LSS containing varying amounts and types of commercially used superdisintegrants (Kollidon® CL-F, Vivasol® and Explotab®). MATERIALS AND METHODS: LSS were prepared by spraying rosuvastatin solution onto Neusilin® US2 and further processing into tablets. Varying amounts of superdisintegrants were used and the differences among LSS were evaluated. The multiple scatter plot method was used to visualize the relationships within the obtained data. RESULTS AND DISCUSSION: All disintegrants do not showed negative effect on the flow properties of powder blends. The type and concentration of superdisintegrant had an impact on the disintegration time and dissolution profiles of tablets. Tablets with Explotab® showed the longest disintegration time and the smallest amount of released drug. Fastest disintegration and dissolution rate were observed in tablets containing Kollidon® CL-F (≥2.5% w/w). Also tablets with Vivasol® (2.5-4.0% w/w) showed fast disintegration and complete drug release. CONCLUSION: Kollidon® CL-F and Vivasol® in concentration ≥2.5% are suitable superdisintegrants for LSS with enhanced release of drug.


Assuntos
Compostos de Alumínio/química , Anticolesterolemiantes/administração & dosagem , Compostos de Magnésio/química , Excipientes Farmacêuticos/química , Povidona/química , Rosuvastatina Cálcica/administração & dosagem , Silicatos/química , Amido/análogos & derivados , Anticolesterolemiantes/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Rosuvastatina Cálcica/química , Solubilidade , Amido/química , Comprimidos/química
9.
Chem Biol Interact ; 239: 100-10, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26115783

RESUMO

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), an uncoupler of mitochondrial oxidative phosphorylation, inhibits cell proliferation and induces cell death with apoptotic features. It was reported that the cytotoxic effects of FCCP are preceded by a rapid glutathione (GSH) depletion with a subsequent loss of mitochondrial transmembrane potential (ΔΨ). The GSH depletion was suggested as the cause of apoptosis in FCCP treated cells. This conclusion was further supported by the finding that all adverse effects of FCCP including cell death can be prevented by N-acetylcysteine (NAC) a precursor of GSH synthesis (Han and Park, 2011). Here, we argue that neither loss of ΔΨ nor GSH depletion is sufficient to account for induction of apoptosis in FCCP treated leukemia K562 cells. Indeed, the lowest concentration of FCCP that brings about the permanent loss of ΔΨ and the extensive decrease in GSH level induces cell death in minor population of cells. Only much higher concentrations of FCCP, that exceed the range to achieve permanent collapse of ΔΨ, induce extensive apoptosis. The low proapoptotic activity of FCCP could be explained by hyperactivation of protein kinase B/Akt. A detailed LC/MS/MS analysis of cell extracts revealed extensive formation of FCCP adducts with GSH. This effect could explain the mechanism of GSH depletion, which is currently unknown. Although NAC induces an increase in the GSH pool, this effect is not crucial for abrogation of FCCP cytotoxicity. Indeed, the presence of NAC in the growth medium causes a rapid clearance of FCCP due to its quantitative conversion into the FCCP-NAC adduct, which is the real cause of abrogated FCCP cytotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Glutationa/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Acetilcisteína/química , Acetilcisteína/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/química , Glutationa/química , Humanos , Células K562/efeitos dos fármacos , Células K562/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Biomed Res Int ; 2015: 580146, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064926

RESUMO

Infectious stomatitis represents the most common oral cavity ailments. Current therapy is insufficiently effective because of the short residence time of topical liquid or semisolid medical formulations. An innovative application form based on bioadhesive polymers featuring prolonged residence time on the oral mucosa may be a solution to this challenge. This formulation consists of a mucoadhesive oral film with incorporated nanocomposite biomaterial that is able to release the drug directly at the target area. This study describes the unique approach of preparing mucoadhesive oral films from carmellose with incorporating a nanotechnologically modified clay mineral intercalated with chlorhexidine. The multivariate data analysis was employed to evaluate the influence of the formulation and process variables on the properties of the medical preparation. This evaluation was complemented by testing the antimicrobial and antimycotic activity of prepared films with the aim of finding the most suitable composition for clinical application. Generally, the best results were obtained with sample containing 20 mg of chlorhexidine diacetate carried by vermiculite, with carmellose in the form of nonwoven textile in its structure. In addition to its promising physicomechanical, chemical, and mucoadhesive properties, the formulation inhibited the growth of Staphylococcus and Candida; the effect was prolonged for tens of hours.


Assuntos
Anti-Infecciosos/administração & dosagem , Carboximetilcelulose Sódica/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanocompostos/administração & dosagem , Estomatite/tratamento farmacológico , Anti-Infecciosos/química , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Carboximetilcelulose Sódica/química , Química Farmacêutica , Quitosana/química , Clorexidina/administração & dosagem , Clorexidina/química , Humanos , Boca/efeitos dos fármacos , Boca/microbiologia , Nanocompostos/química , Polímeros/administração & dosagem , Polímeros/química , Estomatite/microbiologia
11.
Eur J Haematol ; 95(2): 150-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25323158

RESUMO

Increased expression of the ABCB1 gene in cancer cells is usually connected with occurrence of multidrug resistance (MDR) and poor prognosis. However, the correlation between ABCB1 expression and MDR phenotype is difficult to prove in clinical samples. Most of the researchers believe that these difficulties are due to the poor reliability and sensitivity of assays for detection of ABCB1 expression in clinical samples. However, the complexity of P-gp mediated resistance cannot be reduced to the methodical difficulties only. Here, we addressed the question how widely used methods for detection of ABCB1 expression levels could predict its functional activity and thus its contribution to drug resistance in defined conditions in vitro. The ABCB1 expression was assessed at the mRNA level by quantitative real-time polymerase chain reaction (qRT-PCR), and at the protein level by flow cytometry using UIC2 antibody. The ABCB1 function was monitored using a calcein AM accumulation assay. We observed that K562 cells have approximately 320 times higher level of ABCB1 mRNA than HL-60 cells without detectable function. In addition, resistant K562/Dox cells exhibited significantly higher ABCB1 mRNA expression than resistant K562/HHT cells. However, the functional tests clearly indicated opposite results. Flow cytometric assessment of P-gp, although suggested as a reliable method, contradicted the functional test in K562/Dox and K562/HHT cells. We further used a set of MDR cells expressing various levels of P-gp. Similarly here, flow cytometry not always corresponded to the functional analysis. Our results strongly suggest that an approach which exclusively relies on a simple correlation between ABCB1 expression, either at the mRNA level or protein level, and overall resistance may fail to predict actual contribution of P-gp to overall resistance as the data indicating transporter expression reflect its function only roughly even in well-defined in vitro conditions.


Assuntos
Expressão Gênica , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro
12.
Chem Biol Interact ; 220: 248-54, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24998639

RESUMO

Geldanamycin (GDN) is a benzoquinone ansamycin antibiotic with anti-proliferative activity on tumor cells. GDN cytotoxicity has been attributed to the disruption of heat shock protein 90 (Hsp90) binding and stabilizing client proteins, and by the induction of oxidative stress with concomitant glutathione (GSH) depletion. The later mechanism of cytotoxicity can be abrogated by N-acetylcysteine (NAC). It was suggested that NAC prevents GDN cytotoxicity mainly by the restoring of glutathione (GSH) level (Clark et al., 2009). Here we argue that NAC does not protect cells from the GDN cytotoxicity by restoring the level of GSH. A detailed LC/MS/MS analysis of cell extracts indicated formation of GDN adducts with GSH. The amount of the GDN-GSH adduct is proportional to the GDN concentration and increases with incubation time. While nanomolar and low micromolar GDN concentrations induce cell death without an apparent GSH decrease, only much higher micromolar GDN concentrations cause a significant GSH decrease. Therefore, only high micromolar GDN concentrations can cause cell death which might be related to GSH depletion. Addition of NAC leads to the formation of adducts with GDN which diminish formation of GDN adducts with GSH. NAC also forms stable adducts with GDN extracellularly. Although NAC induces an increase in the GSH pool, this effect is not crucial for abrogation of GDN cytotoxicity. Indeed, the presence of NAC in the growth medium causes a rapid conversion of GDN into the GDN-NAC adduct, which is the real cause of the abrogated GDN cytotoxicity.


Assuntos
Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Benzoquinonas/química , Benzoquinonas/toxicidade , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/toxicidade , Acetilcisteína/química , Acetilcisteína/metabolismo , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/toxicidade , Benzoquinonas/metabolismo , Benzoquinonas/farmacologia , Ciclo Celular , Glutationa/química , Glutationa/metabolismo , Humanos , Células K562 , Lactamas Macrocíclicas/metabolismo , Lactamas Macrocíclicas/farmacologia , Estrutura Molecular
13.
Chem Biol Interact ; 219: 203-10, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24954033

RESUMO

The effect of ABCB1 (P-gp, (P-glycoprotein), MDR1) and ABCG2 (BCRP1, (breast cancer resistance protein 1)) expressions on cell resistance to daunorubicin (DRN), imatinib, and nilotinib was studied in human leukemia cells. We used a set of cells derived from a parental K562 cell line, expressing various levels of ABCB1 and ABCG2, respectively. The function of ABCB1 and ABCG2 was confirmed using calcein AM and pheophorbide A accumulation assays, respectively. These assays indicated distinct differences in activities of ABCB1 and ABCG2 which corresponded to their expression levels. We observed that the resistance to DRN and imatinib was proportional to the expression level of ABCB1. Similarly, the resistance to nilotinib and imatinib was proportional to the expression level of ABCG2. Importantly, K562/DoxDR05 and K562/ABCG2-Z cells with the lowest expressions of ABCB1 and ABCG2, respectively, failed to reduce the intracellular levels of imatinib to provide a significant resistance to this drug. However, the K562/DoxDR05 and K562/ABCG2-Z cells significantly decreased the intracellular levels of DRN and nilotinib, respectively, thereby mediating significant resistances to these drugs. Only cells which expression of ABCB1 or ABCG2 exceeded a certain level exhibited a significantly decreased intracellular level of imatinib, and this effect was accompanied by a significantly increased resistance to this drug. Our results clearly indicated that resistance to anticancer drugs mediated by main ABC transporters, ABCB1 and ABCG2, strongly depends on their expressions at protein levels. Importantly, resistance for one drug might be maintained while resistance for other ones might become undetectable at low transporter expression levels.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzamidas/farmacologia , Daunorrubicina/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Piperazinas/farmacologia , Pirimidinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Benzamidas/antagonistas & inibidores , Benzamidas/uso terapêutico , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/antagonistas & inibidores , Daunorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Mesilato de Imatinib , Células K562 , Proteínas de Neoplasias/genética , Piperazinas/antagonistas & inibidores , Piperazinas/uso terapêutico , Pirimidinas/antagonistas & inibidores , Pirimidinas/uso terapêutico
14.
Int J Oral Maxillofac Implants ; 28(5): 1386-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066332

RESUMO

PURPOSE: To study the effects of different chemically modified titanium surfaces on the proliferation, differentiation, adhesion, and apoptosis of osteoblast-like SaOS-2 cells. MATERIALS AND METHODS: In this work, six different titanium materials were tested and compared to each other: (1) glazed; (2) unglazed; (3) unglazed and alkali-etched; (4) unglazed, sandblasted, acid- and alkali-etched; (5) unglazed and coated with zirconium nitride; and (6) unglazed, sandblasted, and acid-etched. The production of alkaline phosphatase (ALP), tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-2, and the expression of adhesion proteins (integrin α3ß1, vinculin) were evaluated using ELISA. Finally, the apoptosis of cells was analyzed by flow cytometry. RESULTS: The most significant differences were found for unglazed sandblasted acid- and alkali-etched titanium discs compared with unglazed titanium discs. The production of TNF-α was decreased after 24 hours, as was the production of ALP after 72 hours. In contrast, the expression of integrin α3ß1 was increased after 6 hours. None of the titanium discs showed an apoptotic effect on cells. CONCLUSIONS: This study has shown that physical surface treatments (such as surface roughness) play a more important role than chemical modifications. Generally, chemical modifications such as acid- and alkali-etching can affect the wettability of titanium surfaces, making a surface hydrophilic or hydrophobic according to the modification. The cell attachment is better on hydrophilic surfaces, while hydrophilic surfaces may slightly decrease the expression of ALP activity.


Assuntos
Implantes Dentários , Osteoblastos/fisiologia , Titânio , Fosfatase Alcalina/biossíntese , Apoptose , Adesão Celular/fisiologia , Ciclo Celular , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Corrosão Dentária , Humanos , Integrina alfa3beta1/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Osteoblastos/citologia , Propriedades de Superfície , Fatores de Tempo , Fator de Necrose Tumoral alfa/biossíntese , Vinculina/metabolismo , Molhabilidade , Zircônio
15.
Pharmacol Res ; 67(1): 79-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103446

RESUMO

The effect of P-glycoprotein (P-gp, ABCB1, MDR1) expression on cell resistance to nilotinib was studied in human leukaemia cells. We used K562/Dox cells overexpressing P-gp and their variants (subclones) with a gradually decreased P-gp expression. These subclones were established by stable transfection of K562/Dox cells with a plasmid vector expressing shRNA targeting the ABCB1 gene. Functional analysis of P-gp using a specific fluorescent probe indicated gradually decreased dye efflux which was proportional to the P-gp expression. We observed that K562/Dox cells overexpressing P-gp contained a significantly reduced intracellular level of nilotinib when compared to their counter partner K562 cells, which do not express P-gp. This effect was accompanied by a decreased sensitivity of the K562/Dox cells to nilotinib. Importantly, cells with downregulated expression of P-gp gradually lost their ability to decrease the intracellular level of nilotinib although they still significantly decreased the intracellular level of daunorubicin (DNR). Accordingly, cells with the reduced expression of P-gp concomitantly failed to provide resistance to nilotinib, however, they exhibited a significant resistance to DNR. Taken together, we demonstrated that the conclusion as to whether P-gp is involved in nilotinib resistance or not strongly depends on its expression at protein level.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células K562 , Leucemia/tratamento farmacológico , Leucemia/metabolismo
16.
J Physiol Biochem ; 69(3): 405-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23184730

RESUMO

The question as to whether A3 adenosine receptor (A3AR) agonists, N (6)-(3-iodobenzyl)-adenosine-5'-N- methyluronamide (IB-MECA) and 2-chloro-N (6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), could exert cytotoxic effects at high concentrations with or without the involvement of A3AR has been a controversial issue for a long time. The initial findings suggesting that A3AR plays a crucial role in the induction of cell death upon treatment with micromolar concentrations of IB-MECA or Cl-IB-MECA were revised, however, the direct and unequivocal evidence is still missing. Therefore, the sensitivity of Chinese hamster ovary (CHO) cells transfected with human recombinant A3AR (A3-CHO) and their counter partner wild-type CHO cells, which do not express any of adenosine receptors, to micromolar concentrations of IB-MECA and Cl-IB-MECA was studied. We observed that IB-MECA and Cl-IB-MECA exhibited a strong inhibitory effect on cell proliferation due to the blockage of cell cycle progression at G1/S and G2/M transitions in both A3-CHO and CHO cells. Further analysis revealed that IB-MECA and Cl-IB-MECA attenuated the Erk1/2 signalling irrespectively to A3AR expression. In addition, Cl-IB-MECA induced massive cell death mainly with hallmarks of a necrosis in both cell lines. In contrast, IB-MECA affected cell viability only slightly independently of A3AR expression. IB-MECA induced cell death that exhibited apoptotic hallmarks. In general, the sensitivity of A3-CHO cells to micromolar concentrations of IB-MECA and Cl-IB-MECA was somewhat, but not significantly, higher than that observed in the CHO cells. These results strongly suggest that IB-MECA and Cl-IB-MECA exert cytotoxic effects at micromolar concentrations independently of A3AR expression.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/análogos & derivados , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Receptor A3 de Adenosina/genética , Transdução de Sinais/efeitos dos fármacos , Adenosina/farmacologia , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor A3 de Adenosina/metabolismo , Transfecção
17.
Cancer Cell ; 21(4): 517-31, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22516260

RESUMO

Activation of the MLL-ENL-ERtm oncogene initiates aberrant proliferation of myeloid progenitors. Here, we show induction of a fail-safe mechanism mediated by the DNA damage response (DDR) machinery that results in activation of the ATR/ATM-Chk1/Chk2-p53/p21(CIP1) checkpoint and cellular senescence at early stages of cellular transformation caused by a regulatable MLL-ENL-ERtm in mice. Furthermore, we identified the transcription program underlying this intrinsic anticancer barrier, and DDR-induced inflammatory regulators that fine-tune the signaling toward senescence, thereby modulating the fate of MLL-ENL-immortalized cells in a tissue-environment-dependent manner. Our results indicate that DDR is a rate-limiting event for acquisition of stem cell-like properties in MLL-ENL-ERtm-mediated transformation, as experimental inhibition of the barrier accelerated the transition to immature cell states and acute leukemia development.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/genética , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , Animais , Cafeína/farmacologia , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Técnicas de Introdução de Genes , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
18.
J Cell Physiol ; 227(2): 676-85, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21520073

RESUMO

We studied effects of 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA) on apoptosis induction in the K562/Dox cell line, which overexpressed P-glycoprotein (P-gp, ABCB1, MDR1). We found that the K562/Dox cell line was significantly more resistant to Cl-IB-MECA than the maternal cell line K562, which did not express P-gp. Although both cell lines expressed the A3 adenosine receptor (A3AR), cytotoxic effects of Cl-IB-MECA were not prevented by its selective antagonist MRS1523 (3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate). Analysis of cell extracts revealed that the intracellular level of Cl-IB-MECA was significantly lower in the K562/Dox cell line than in the maternal cell line K562. The downregulation of P-gp expression using shRNA targeting ABCB1 gene led to increased intracellular level of Cl-IB-MECA and restored cell sensitivity to this drug. Similarly, valspodar (PSC-833), a specific inhibitor of P-gp, restored sensitivity of the K562/Dox cell line to Cl-IB-MECA with concomitant increase of intracellular level of Cl-IB-MECA in the resistant cell line, while it affected cytotoxicity of Cl-IB-MECA in the sensitive cell line only marginally. An enzyme based assay provided evidence for interaction of P-gp with Cl-IB-MECA. We further observed that cytotoxic effects of Cl-IB-MECA could be augmented by activation of extrinsic cell death pathway by Apo-2L (TRAIL) but not FasL or TNF-α. Our results revealed that Cl-IB-MECA induced an increase in expression of TRAIL receptors in K562 cells, which could sensitize cells to apoptosis induction via an extrinsic cell death pathway. Importantly, these effects were inversely related to P-gp expression. In addition, MRS1523 did not affect Cl-IB-MECA induced expression of TRAIL receptors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenosina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/fisiologia , Leucemia/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina Trifosfatases/metabolismo , Morte Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Humanos
19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(21): 1875-80, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21641880

RESUMO

A sensitive assay for direct determination of intracellular level of daunorubicin (DRN) in resistant leukemia cells with overexpressed P-glycoprotein has been developed. This assay is based on a rapid separation of cells from media and fast cut-off of DRN transportation by centrifugation of cells through a layer of silicone oil. Cell pellets were extracted using 1% (v/v) formic acid in 50% (v/v) ethanol in water. The cell extracts were subsequently analysed by liquid chromatography (HPLC) coupled a low-energy collision tandem mass spectrometer equipped with an electrospray ionization source (ESI-CID-MS/MS) operated in the multiple-reaction monitoring (MRM) mode. Calibration curve was linear from 0.4 to 250nM with correlation coefficient (r²) better than 0.998. The limit of quantitation (LOQ) was 0.4 nM. The assay has been successfully applied to a determination of intracellular content of daunorubicin in sensitive K562 and resistant K562/Dox and K562/HHT300 cells.


Assuntos
Daunorrubicina/análise , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Antibióticos Antineoplásicos/análise , Antibióticos Antineoplásicos/farmacocinética , DNA de Neoplasias/análise , Daunorrubicina/farmacocinética , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Fluorescência , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Células K562 , Modelos Lineares , Sensibilidade e Especificidade
20.
Talanta ; 83(5): 1466-71, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21238737

RESUMO

Multidrug resistance (MDR) is often associated with overexpression of the P-glycoprotein (P-gp, ABCB1). It was demonstrated that the P-gp mediated efflux decreases the drug concentration in cancer cells which results in the failure of chemotherapy. However, the MDR phenotype in cancer cells obviously involves various mechanisms. Therefore, if we want to estimate a contribution of the P-gp expression to the MDR phenotype, a clear quantitative relationship between the intracellular drug level and cell sensitivity must be established. To achieve this goal, a sensitive and non-radioactive assay for precise determination of intracellular levels of imatinib and its main metabolite N-desmethyl imatinib (CGP 74588) has been developed. The assay is based on an optimised extraction of cells with 4% formic acid after their separation from the growth medium by centrifugation through a layer of silicone oil. Cell extracts are subsequently analyzed by LC/MS/MS. Calibration curves were linear from 1 to 500 nmol/l for imatinib and from 2 to 500 nmol/l for CGP 74588, with correlation coefficients (r(2)) better than 0.998 and 0.996, respectively. The limit of quantitation (LOQ) was 1 nmol/l for imatinib and 2 nmol/l for CGP 74588. Our method has been successfully applied to the determination of intracellular levels of imatinib in sensitive K562 and their resistant variant, K562/Dox cells.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Piperazinas/química , Pirimidinas/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Benzamidas , Bioensaio/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Mesilato de Imatinib , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Limite de Detecção , Piperazinas/metabolismo , Pirimidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA