Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Clin Epigenetics ; 16(1): 65, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741114

RESUMO

OBJECTIVE: Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which differ between youth- and adult-onset might delineate the impacts of T2D development at different ages and could also determine the contribution of exposure to in utero diabetes. METHODS: We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic ancestry. RESULTS: We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794 were moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This is the first study to link PFKFB3 and T2D in youth. CONCLUSION: Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and suggests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes and the onset of T2D.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2 , Efeitos Tardios da Exposição Pré-Natal , Humanos , Diabetes Mellitus Tipo 2/genética , Feminino , Metilação de DNA/genética , Gravidez , Adolescente , Masculino , Efeitos Tardios da Exposição Pré-Natal/genética , Epigênese Genética/genética , Idade de Início , Criança , Estudos de Casos e Controles , Diabetes Gestacional/genética , Adulto , Epigenoma/genética
2.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L552-L567, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642652

RESUMO

Prenatal and early-life exposure to cigarette smoke (CS) has repeatedly been shown to induce stable, long-term changes in DNA methylation (DNAm) in offspring. It has been hypothesized that these changes might be functionally related to the known outcomes of prenatal and early-life CS exposure, which include impaired lung development, altered lung function, and increased risk of asthma and wheeze. However, to date, few studies have examined DNAm changes induced by prenatal CS in tissues of the lung, and even fewer have attempted to examine the specific influences of prenatal versus early postnatal exposures. Here, we have established a mouse model of CS exposure which isolates the effects of prenatal and early postnatal CS exposures in early life. We have used this model to measure the effects of prenatal and/or postnatal CS exposures on lung function and immune cell infiltration as well as DNAm and expression of Cyp1a1, a candidate gene previously observed to demonstrate DNAm differences on CS exposure in humans. Our study revealed that exposure to CS prenatally and in the early postnatal period causes long-lasting differences in offspring lung function, gene expression, and lung Cyp1a1 DNAm, which wane over time but are reestablished on reexposure to CS in adulthood. This study creates a testable mouse model that can be used to investigate the effects of prenatal and early postnatal CS exposures and will contribute to the design of intervention strategies to mediate these detrimental effects.NEW & NOTEWORTHY Here, we isolated effects of prenatal from early postnatal cigarette smoke and showed that exposure to cigarette smoke early in life causes changes in offspring DNA methylation at Cyp1a1 that last through early adulthood but not into late adulthood. We also showed that smoking in adulthood reestablished these DNA methylation patterns at Cyp1a1, suggesting that a mechanism other than DNA methylation results in long-term memory associated with early-life cigarette smoke exposures at this gene.


Assuntos
Fumar Cigarros , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Animais , Camundongos , Feminino , Metilação de DNA , Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/farmacologia , Nicotiana/efeitos adversos , Pulmão/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 934706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303872

RESUMO

Objective: Rates of type 2 diabetes (T2D) among adolescents are on the rise. Epigenetic changes could be associated with the metabolic alterations in adolescents with T2D. Methods: We performed a cross sectional integrated analysis of DNA methylation data from peripheral blood mononuclear cells with serum metabolomic data from First Nation adolescents with T2D and controls participating in the Improving Renal Complications in Adolescents with type 2 diabetes through Research (iCARE) cohort study, to explore the molecular changes in adolescents with T2D. Results: Our analysis showed that 43 serum metabolites and 36 differentially methylated regions (DMR) were associated with T2D. Several DMRs were located near the transcriptional start site of genes with established roles in metabolic disease and associated with altered serum metabolites (e.g. glucose, leucine, and gamma-glutamylisoleucine). These included the free fatty acid receptor-1 (FFAR1), upstream transcription factor-2 (USF2), and tumor necrosis factor-related protein-9 (C1QTNF9), among others. Conclusions: We identified DMRs and metabolites that merit further investigation to determine their significance in controlling gene expression and metabolism which could define T2D risk in adolescents.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Adolescente , Diabetes Mellitus Tipo 2/metabolismo , Metilação de DNA , Estudos Transversais , Estudos de Coortes , Leucócitos Mononucleares/patologia , Metaboloma
4.
Toxicol Appl Pharmacol ; 453: 116210, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028075

RESUMO

Doxorubicin (DOX) is an effective anthracycline used in chemotherapeutic regimens for a variety of haematological and solid tumors. However, its utility remains limited by its well-described, but poorly understood cardiotoxicity. Despite numerous studies describing various forms of regulated cell death and their involvement in DOX-mediated cardiotoxicity, the predominate form of cell death remains unclear. Part of this inconsistency lies in a lack of standardization of in vivo and in vitro model design. To this end, the objective of this study was to characterize acute low- and high-dose DOX exposure on cardiac structure and function in C57BL/6 N mice, and evaluate regulated cell death pathways and autophagy both in vivo and in cardiomyocyte culture models. Acute low-dose DOX had no significant impact on cardiac structure or function; however, acute high-dose DOX elicited substantial cardiac necrosis resulting in diminished cardiac mass and volume, with a corresponding reduced cardiac output, and without impacting ejection fraction or fibrosis. Low-dose DOX consistently activated caspase-signaling with evidence of mitochondrial permeability transition. However, acute high-dose DOX had only modest impact on common necrotic signaling pathways, but instead led to an inhibition in autophagic flux. Intriguingly, when autophagy was inhibited in cultured cardiomyoblasts, DOX-induced necrosis was enhanced. Collectively, these observations implicate inhibition of autophagy flux as an important component of the acute necrotic response to DOX, but also suggest that acute high-dose DOX exposure does not recapitulate the disease phenotype observed in human cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Animais , Antibióticos Antineoplásicos/toxicidade , Apoptose , Autofagia , Cardiotoxicidade/metabolismo , Morte Celular , Doxorrubicina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Necrose
5.
Circ Heart Fail ; 15(5): e008547, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35418250

RESUMO

BACKGROUND: High doses of doxorubicin put cancer patients at risk for developing dilated cardiomyopathy. Previously, we showed that doxorubicin treatment decreases SIRT3 (sirtuin 3), the main mitochondrial deacetylase and increases protein acetylation in rat cardiomyocytes. Here, we hypothesize that SIRT3 expression can attenuate doxorubicin induced dilated cardiomyopathy in vivo by preventing the acetylation of mitochondrial proteins. METHODS: Nontransgenic, M3-SIRT3 (truncated SIRT3; short isoform), and M1-SIRT3 (full-length SIRT3; mitochondrial localized) transgenic mice were treated with doxorubicin for 4 weeks (8 mg/kg body weight per week). Echocardiography was performed to assess cardiac structure and function and validated by immunohistochemistry and immunofluorescence (n=4-10). Mass spectrometry was performed on cardiac mitochondrial peptides in saline (n=6) and doxorubicin (n=5) treated hearts. Validation was performed in doxorubicin treated primary rat and human induced stem cell derived cardiomyocytes transduced with adenoviruses for M3-SIRT3 and M1-SIRT3 and deacetylase deficient mutants (n=4-10). RESULTS: Echocardiography revealed that M3-SIRT3 transgenic mice were partially resistant to doxorubicin induced changes to cardiac structure and function whereas M1-SIRT3 expression prevented cardiac remodeling and dysfunction. In doxorubicin hearts, 37 unique acetylation sites on mitochondrial proteins were altered. Pathway analysis revealed these proteins are involved in energy production, fatty acid metabolism, and oxidative stress resistance. Increased M1-SIRT3 expression in primary rat and human cardiomyocytes attenuated doxorubicin-induced superoxide formation, whereas deacetylase deficient mutants were unable to prevent oxidative stress. CONCLUSIONS: Doxorubicin reduced SIRT3 expression and markedly affected the cardiac mitochondrial acetylome. Increased M1-SIRT3 expression in vivo prevented doxorubicin-induced cardiac dysfunction, suggesting that SIRT3 could be a potential therapeutic target for mitigating doxorubicin-induced dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Doxorrubicina , Estresse Oxidativo , Sirtuína 3 , Acetilação/efeitos dos fármacos , Animais , Cardiomiopatia Dilatada/induzido quimicamente , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/prevenção & controle , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Sirtuína 3/genética , Sirtuína 3/metabolismo
6.
IUBMB Life ; 74(6): 496-507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184384

RESUMO

The human hepatocyte nuclear factor 1 homeobox A (HNF1A) gene loci express the protein-coding HNF1A transcript and a long non-coding RNA in the anti-sense (HNF1A-AS1) direction. HNF1A-AS1 is expressed in numerous types of cancers and poor clinical outcomes such as higher mortality rates, greater metastatic capacity, and poor prognosis of the disease are the results of this expression. In this study, we determined the epigenetic features of the HNF1A gene loci, and expression and cellular localization of HNF1A-AS1 RNA, HNF1A RNA, and HNF1A protein in colorectal cancer (HT-29, HTC116, RKO, and SW480) and normal colon epithelial (CCD841) cells. The HT-29 HNF1A gene had active histone marks (H3K4me3, H3K27ac) and DNase 1 accessible sites at the promoter regions of the HNF1A and HNF1A-AS1 genes. These epigenetic marks were not observed in the other colorectal cancer cells or in the normal colon epithelial cells. Consistent with the active gene epigenetic signature of the HNF1A gene in HT-29 cells, HNF1A protein, and HNF1A/HNF1A-AS1 transcripts were detected in HT-29 cells but poorly, if at all observed, in the other cell types. In HT-29 cells, HNF1A-AS1 localized to the nucleus and was found to bind to the enhancer of zeste homolog 2 (EZH2, a member of PRC2 complex) and potentially form RNA-DNA triplexes with DNase 1 accessible sites in the HT-29 genome. These activities of HNF1A-AS1 may contribute to the oncogenic properties of this long non-coding RNA.


Assuntos
Neoplasias do Colo , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Desoxirribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Diabetologia ; 65(4): 733-747, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091821

RESUMO

AIMS/HYPOTHESIS: Obesity and hepatic steatosis are risk factors for gestational diabetes mellitus (GDM), a common complication of pregnancy. Adiponectin is a fat-derived hormone that improves hepatic steatosis and insulin sensitivity. Low levels of circulating adiponectin are associated with GDM development. We hypothesised that adiponectin deficiency causes fatty liver during pregnancy, contributing to the development of GDM. METHODS: To determine the role of adiponectin in fatty liver development during pregnancy, we compared pregnant (third week of pregnancy) adiponectin knockout (KO) mice (strain B6;129-Adipoqtm1Chan/J) with wild-type mice and assessed several variables of hepatic lipid metabolism and glucose homeostasis. The impact of adiponectin supplementation was measured by administering adenovirus-mediated full-length adiponectin at the end of the second week of pregnancy and comparing with green fluorescent protein control. RESULTS: In the third week of pregnancy, fasted pregnant adiponectin KO mice were hyperglycaemic on a low-fat diet (9.2 mmol/l vs 7.7 mmol/l in controls, p<0.05) and were glucose and pyruvate intolerant relative to wild-type mice. Pregnant adiponectin KO mice developed hepatic steatosis and a threefold elevation in hepatic triacylglycerols (p<0.05) relative to wild-type mice. Gestational weight gain and food consumption were similar in KO and wild-type mice. Adenoviral-mediated adiponectin supplementation to pregnant adiponectin KO mice improved glucose tolerance, prevented fasting hyperglycaemia and attenuated fatty liver development. CONCLUSIONS/INTERPRETATION: Adiponectin deficiency increased hepatic lipid accumulation during the period of pregnancy associated with increased fat utilisation. Consequently, adiponectin deficiency contributed to glucose intolerance, dysregulated gluconeogenesis and hyperglycaemia, all of which are characteristic of GDM. Increasing adiponectin in the last week of pregnancy alleviated hepatic steatosis and restored normal glucose homeostasis during pregnancy.


Assuntos
Diabetes Gestacional , Fígado Gorduroso , Hiperglicemia , Resistência à Insulina , Adiponectina/deficiência , Adiponectina/metabolismo , Animais , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Fígado/metabolismo , Erros Inatos do Metabolismo , Camundongos , Camundongos Knockout , Gravidez
8.
J Nutr Biochem ; 95: 108778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34004342

RESUMO

Non-alcoholic fatty liver disease is a common metabolic disorder associated with insulin resistance and lacks a specific treatment. Our previous studies demonstrated that freeze-dried Saskatoon berry powder (SBp) reduced high fat-high sucrose (HFHS) diet-induced hyperglycemia and insulin resistance in mice. The present study examined the effect of SBp and one of its active components, cyanidin-3-glucoside (C3G), on hepatic steatosis in mice fed with HFHS diet for 10 weeks. HFHS diet significantly increased fasting plasma glucose, cholesterol, triglycerides, insulin resistance, inflammatory markers (tumor necrosis factor-α, monocyte chemotactic protein-1, plasminogen activator inbitor-1), alanine aminotransferase activity, and monocyte adhesion compared to control diet. In the liver, HFHS diet increased steatosis, lipid accumulation, collagen deposition, and the abundance of patatin-like phospholipase domain-containing 3, CCAAT-enhancer-binding protein homologous protein, toll-like receptor-4, and macrophage marker. Supplementation with SBp (5%) or C3G in an amount corresponding to that in 5% SBp to HFHS diet had similar effects to reduced fasting plasma glucose, liver steatosis, enzyme activity, lipid, collagen and macrophage deposition, hyperglycemia, hyperlipidemia, insulin resistance, monocyte adhesion, markers related to liver steatosis, inflammation, oxidative or endoplasmic reticulum stress in the peripheral circulation and/or liver compared to mice fed with HFHS diet alone. No significant difference in the studied variables was detected between mice treated with HFHS+SBp and C3G diet. The results suggest that SBp or C3G administration attenuates HFHS diet-induced liver steatosis in addition to insulin resistance and chronic inflammation in mice. C3G may contribute to the beneficial effects of SBp.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais , Frutas/química , Obesidade/induzido quimicamente , Rosaceae/química , Adolescente , Animais , Glicemia , Sacarose Alimentar/administração & dosagem , Homeostase , Humanos , Insulina/genética , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Pós
9.
Autophagy ; 17(9): 2257-2272, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33044904

RESUMO

Lipotoxicity is a form of cellular stress caused by the accumulation of lipids resulting in mitochondrial dysfunction and insulin resistance in muscle. Previously, we demonstrated that the mitophagy receptor BNIP3L/Nix is responsive to lipotoxicity and accumulates in response to a high-fat (HF) feeding. To provide a better understanding of this observation, we undertook gene expression array and shot-gun metabolomics studies in soleus muscle from rodents on an HF diet. Interestingly, we observed a modest reduction in several autophagy-related genes. Moreover, we observed alterations in the fatty acyl composition of cardiolipins and phosphatidic acids. Given the reported roles of these phospholipids and BNIP3L in mitochondrial dynamics, we investigated aberrant mitochondrial turnover as a mechanism of impaired myocyte insulin signaling. In a series of gain-of-function and loss-of-function experiments in rodent and human myotubes, we demonstrate that BNIP3L accumulation triggers mitochondrial depolarization, calcium-dependent activation of DNM1L/DRP1, and mitophagy. In addition, BNIP3L can inhibit insulin signaling through activation of MTOR-RPS6KB/p70S6 kinase inhibition of IRS1, which is contingent on phosphatidic acids and RHEB. Finally, we demonstrate that BNIP3L-induced mitophagy and impaired glucose uptake can be reversed by direct phosphorylation of BNIP3L by PRKA/PKA, leading to the translocation of BNIP3L from the mitochondria and sarcoplasmic reticulum to the cytosol. These findings provide insight into the role of BNIP3L, mitochondrial turnover, and impaired myocyte insulin signaling during an overfed state when overall autophagy-related gene expression is reduced. Furthermore, our data suggest a mechanism by which exercise or pharmacological activation of PRKA may overcome myocyte insulin resistance.Abbreviations: BCL2: B cell leukemia/lymphoma 2; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; DNM1L/DRP1: dynamin 1-like; FUNDC1: FUN14 domain containing 1; IRS1: insulin receptor substrate 1; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; MFN1: mitofusin 1; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; OPA1: OPA1 mitochondrial dynamin like GTPase; PDE4i: phosphodiesterase 4 inhibitor; PLD1: phospholipase D1; PLD6: phospholipase D family member 6; PRKA/PKA: protein kinase, AMP-activated; PRKCD/PKCδ: protein kinase C, delta; PRKCQ/PKCθ: protein kinase C, theta; RHEB: Ras homolog enriched in brain; RPS6KB/p70S6K: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; YWHAB/14-3-3ß: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta.


Assuntos
Proteínas de Membrana , Dinâmica Mitocondrial , Mitofagia , Células Musculares , Proteínas Proto-Oncogênicas , Proteínas Supressoras de Tumor , Animais , Autofagia/fisiologia , Células Cultivadas , Glucose/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Células Musculares/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
Cochrane Database Syst Rev ; 1: CD011919, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31978258

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic disorder that is characterised by insulin resistance and hyperglycaemia, which over time may give rise to vascular complications. Resveratrol is a plant-derived nutritional supplement shown to have anti-diabetic properties in many animal models. Less evidence is available on its safety and efficacy in the management of T2DM in humans. OBJECTIVES: To assess the efficacy and safety of resveratrol formulations for adults with type 2 diabetes mellitus. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, PubMed, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and International Pharmaceutical Abstracts, as well as the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. The date of the last search was December 2018 for all databases. No language restrictions were applied. SELECTION CRITERIA: All randomised controlled trials (RCTs) comparing effects of oral resveratrol (any dose or formulation, duration, or frequency of administration) with placebo, no treatment, other anti-diabetic medications, or diet or exercise, in adults with a diagnosis of T2DM. DATA COLLECTION AND ANALYSIS: Two review authors independently identified and included RCTs, assessed risk of bias, and extracted study-level data. Study authors were contacted for any missing information or for clarification of reported data. We assessed studies for certainty of the evidence using the GRADE instrument. MAIN RESULTS: We identified three RCTs with a total of 50 participants. Oral resveratrol not combined with other plant polyphenols was administered at 10 mg, 150 mg, or 1000 mg daily for a period ranging from four weeks to five weeks. The comparator intervention was placebo. Overall, all three included studies had low risk of bias. None of the three included studies reported long-term, patient-relevant outcomes such as all-cause mortality, diabetes-related complications, diabetes-related mortality, health-related quality of life, or socioeconomic effects. All three included studies reported that no adverse events were observed, indicating that no deaths occurred (very low-quality evidence for adverse events, all-cause mortality, and diabetes-related mortality). Resveratrol versus placebo showed neutral effects for glycosylated haemoglobin A1c (HbA1c) levels (mean difference (MD) 0.1%, 95% confidence interval (CI) -0.02 to 0.2; P = 0.09; 2 studies; 31 participants; very low-certainty evidence). Due to the short follow-up period, HbA1c results have to be interpreted cautiously. Similarly, resveratrol versus placebo showed neutral effects for fasting blood glucose levels (MD 2 mg/dL, 95% CI -2 to 7; P = 0.29; 2 studies; 31 participants), and resveratrol versus placebo showed neutral effects for insulin resistance (MD -0.35, 95% CI -0.99 to 0.28; P = 0.27; 2 studies; 36 participants). We found eight ongoing RCTs with approximately 800 participants and two studies awaiting assessment, which, when published, could contribute to the findings of this review. AUTHORS' CONCLUSIONS: Currently, research is insufficient for review authors to evaluate the safety and efficacy of resveratrol supplementation for treatment of adults with T2DM. The limited available research does not provide sufficient evidence to support any effect, beneficial or adverse, of four to five weeks of 10 mg to 1000 mg of resveratrol in adults with T2DM. Adequately powered RCTs reporting patient-relevant outcomes with long-term follow-up periods are needed to further evaluate the efficacy and safety of resveratrol supplementation in the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resveratrol/uso terapêutico , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Jejum/sangue , Hemoglobinas Glicadas , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
11.
DNA Cell Biol ; 37(11): 866-877, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30230915

RESUMO

The fibroblast growth factor (FGF) 16 gene is preferentially expressed by cardiomyocytes after birth with levels increasing into adulthood. Null mice and isolated heart studies suggest a role for FGF-16 in cardiac maintenance and survival, including increased resistance to doxorubicin (DOX)-induced injury. A single treatment with DOX was also shown to rapidly deplete endogenous rat FGF-16 mRNA at 6 h in both adult heart and neonatal cardiomyocytes. However, the effect of DOX on rat cardiac function at the time of decreased FGF-16 gene expression and the effect of FGF-16 availability on cardiomyocyte survival, including in the context of acute DOX cytotoxicity, have not been reported. The objective was to assess the effect of acute (6 and 24 h) DOX treatment on cardiac function and the effects of FGF-16 small interfering RNA "knockdown," as well as adenoviral overexpression, in the context of acute DOX cytotoxicity, including cardiomyocyte survival and DOX efflux transport. A significant decrease in heart systolic function was detected by echocardiography in adult rats treated with 15 mg DOX/kg at 6 h; however, unlike FGF-16, there was no change in atrial natriuretic peptide transcript levels. Both systolic and diastolic dysfunctions were observed at 24 h. In addition, specific FGF-16 "knockdown" in neonatal rat cardiomyocytes results in a significant increase in cell death. Conversely, adenoviral FGF-16 overexpression was associated with a significant decrease in cardiomyocyte injury as a result of 1 µM DOX treatment. A specific increase in efflux transporter gene expression and DOX efflux was also seen, which is consistent with a reduction in DOX cytotoxicity. Finally, the increased efflux and decreased DOX-induced damage with FGF-16 overexpression were blunted by inhibition of FGF receptor signaling. These observations are consistent with FGF-16 serving as an endogenous cardiomyocyte survival factor, which may involve a positive effect on regulating efflux transport to reduce cardiotoxicity.


Assuntos
Cardiomiopatias/genética , Citotoxinas/toxicidade , Doxorrubicina/toxicidade , Fatores de Crescimento de Fibroblastos/genética , Miócitos Cardíacos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Transporte Biológico/efeitos dos fármacos , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/patologia , Cardiomiopatias/prevenção & controle , Sobrevivência Celular/efeitos dos fármacos , Ecocardiografia , Fatores de Crescimento de Fibroblastos/agonistas , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Testes de Função Cardíaca , Injeções Intraperitoneais , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Cultura Primária de Células , Pirróis/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
12.
Int J Mol Sci ; 19(7)2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002286

RESUMO

Barth Syndrome (BTHS) is a rare X-linked genetic disease in which the specific biochemical deficit is a reduction in the mitochondrial phospholipid cardiolipin (CL) as a result of a mutation in the CL transacylase tafazzin. We compared the phosphokinome profile in Epstein-Barr-virus-transformed lymphoblasts prepared from a BTHS patient with that of an age-matched control individual. As expected, mass spectrometry analysis revealed a significant (>90%) reduction in CL in BTHS lymphoblasts compared to controls. In addition, increased oxidized phosphatidylcholine (oxPC) and phosphatidylethanolamine (PE) levels were observed in BTHS lymphoblasts compared to control. Given the broad shifts in metabolism associated with BTHS, we hypothesized that marked differences in posttranslational modifications such as phosphorylation would be present in the lymphoblast cells of a BTHS patient. Phosphokinome analysis revealed striking differences in the phosphorylation levels of phosphoproteins in BTHS lymphoblasts compared to control cells. Some phosphorylated proteins, for example, adenosine monophosphate kinase, have been previously validated as bonafide modified phosphorylation targets observed in tafazzin deficiency or under conditions of reduced cellular CL. Thus, we report multiple novel phosphokinome targets in BTHS lymphoblasts and hypothesize that alteration in the phosphokinome profile may provide insight into the pathophysiology of BTHS and potential therapeutic targets.


Assuntos
Síndrome de Barth/metabolismo , Linfócitos/metabolismo , Fosfoproteínas/metabolismo , Síndrome de Barth/patologia , Humanos , Linfócitos/patologia
13.
Cell Death Differ ; 25(10): 1732-1748, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29511336

RESUMO

Myocardin is a transcriptional co-activator required for cardiovascular development, but also promotes cardiomyocyte survival through an unclear molecular mechanism. Mitochondrial permeability transition is implicated in necrosis, while pore closure is required for mitochondrial maturation during cardiac development. We show that loss of myocardin function leads to subendocardial necrosis at E9.5, concurrent with elevated expression of the death gene Nix. Mechanistically, we demonstrate that myocardin knockdown reduces microRNA-133a levels to allow Nix accumulation, leading to mitochondrial permeability transition, reduced mitochondrial respiration, and necrosis. Myocardin knockdown elicits calcium release from the endo/sarcoplasmic reticulum with mitochondrial calcium accumulation, while restoration of microRNA-133a function, or knockdown of Nix rescues calcium perturbations. We observed reduced myocardin and elevated Nix expression within the infarct border-zone following coronary ligation. These findings identify a myocardin-regulated pathway that maintains calcium homeostasis and mitochondrial function during development, and is attenuated during ischemic heart disease. Given the diverse role of Nix and microRNA-133a, these findings may have broader implications to metabolic disease and cancer.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Células Cultivadas , Doxorrubicina/farmacologia , Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Permeabilidade/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Retículo Sarcoplasmático/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/genética
14.
Biol Chem ; 398(9): 955-974, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28253192

RESUMO

Anthracycline chemotherapeutics such as doxorubicin continue to be important treatments for many cancers. Through improved screening and therapy, more patients are surviving and living longer after the diagnosis of their cancer. However, anthracyclines are associated with both short- and long-term cardiotoxic effects. Doxorubicin-induced mitochondrial dysfunction is a central mechanism in the cardiotoxic effects of doxorubicin that contributes to impaired cardiac energy levels, increased reactive oxygen species production, cardiomyocyte apoptosis and the decline in cardiac function. Sirtuins are protein deacetylases that are activated by low energy levels and stimulate energy production through their activation of transcription factors and enzymatic regulators of cardiac energy metabolism. In addition, sirtuins activate oxidative stress resistance pathways. SIRT1 and SIRT3 are expressed at high levels in the cardiomyocyte. This review examines the function of sirtuins in the regulation of cardiac mitochondrial function, with a focus on their role in heart failure and an emphasis on their effects on doxorubicin-induced cardiotoxicity. We discuss the potential for sirtuin activation in combination with anthracycline chemotherapy in order to mitigate its cardiotoxic side-effects without reducing the antineoplastic activity of anthracyclines.


Assuntos
Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Sirtuínas/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Humanos , Mitocôndrias Cardíacas/metabolismo
15.
Circ Cardiovasc Genet ; 10(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28196902

RESUMO

BACKGROUND: Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)-deficient (Hyal2-/- ) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2-/- mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. METHODS AND RESULTS: Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2-/- mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2-/- compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2-/- mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2-/- embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. CONCLUSIONS: These data demonstrate that disruption of normal HA catabolism in Hyal2-/- mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure.


Assuntos
Cardiopatias Congênitas/enzimologia , Insuficiência Cardíaca/enzimologia , Hialuronoglucosaminidase/deficiência , Células-Tronco Mesenquimais/enzimologia , Disfunção Ventricular Esquerda/enzimologia , Animais , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Proliferação de Células , Progressão da Doença , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal , Fibrose , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Doenças das Valvas Cardíacas/enzimologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Doenças das Valvas Cardíacas/fisiopatologia , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Fenótipo , Volume Sistólico , Fatores de Tempo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
16.
Endocrinology ; 157(6): 2270-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27070098

RESUMO

In pancreatic ß-cells, controlling the levels of reactive oxygen species (ROS) is critical to counter oxidative stress, dysfunction and death under nutrient excess. Moreover, the fine-tuning of ROS and redox balance is important in the regulation of normal ß-cell physiology. We recently demonstrated that Bcl-2 and Bcl-xL, in addition to promoting survival, suppress ß-cell glucose metabolism and insulin secretion. Here, we tested the hypothesis that the nonapoptotic roles of endogenous Bcl-2 extend to the regulation of ß-cell ROS and redox balance. We exposed mouse islet cells and MIN6 cells to the Bcl-2/Bcl-xL antagonist Compound 6 and the Bcl-2-specific antagonist ABT-199 and evaluated ROS levels, Ca(2+) responses, respiratory control, superoxide dismutase activity and cell death. Both acute glucose stimulation and the inhibition of endogenous Bcl-2 progressively increased peroxides and stimulated superoxide dismutase activity in mouse islets. Importantly, conditional ß-cell knockout of Bcl-2 amplified glucose-induced formation of peroxides. Bcl-2 antagonism also induced a mitochondrial proton leak that was prevented by the antioxidant N-acetyl-L-cysteine and, therefore, secondary to redox changes. We further established that the proton leak was independent of uncoupling protein 2 but partly mediated by the mitochondrial permeability transition pore. Acutely, inhibitor-induced peroxides promoted Ca(2+) influx, whereas under prolonged Bcl inhibition, the elevated ROS was required for induction of ß-cell apoptosis. In conclusion, our data reveal that endogenous Bcl-2 modulates moment-to-moment ROS signaling and suppresses a redox-regulated mitochondrial proton leak in ß-cells. These noncanonical roles of Bcl-2 may be important for ß-cell function and survival under conditions of high metabolic demand.


Assuntos
Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Feminino , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Prótons , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Superóxido Dismutase/metabolismo
17.
Biochim Biophys Acta ; 1861(10): 1544-54, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26972373

RESUMO

Mitochondrial oxidation of fatty acids accounts for the majority of cardiac ATP production in the heart. Fatty acid utilization by cardiac mitochondria is controlled at the level of fatty acid uptake, lipid synthesis, mobilization and mitochondrial import and oxidation. Consequently defective mitochondrial function appears to be central to the development of heart failure. Cardiolipin is a key mitochondrial phospholipid required for the activity of the electron transport chain. In heart failure, loss of cardiolipin and tetralinoleoylcardiolipin helps to fuel the generation of excessive reactive oxygen species that are a by-product of inefficient mitochondrial electron transport chain complexes I and III. In this vicious cycle, reactive oxygen species generate lipid peroxides and may, in turn, cause oxidation of cardiolipin catalyzed by cytochrome c leading to cardiomyocyte apoptosis. Hence, preservation of cardiolipin and mitochondrial function may be keys to the prevention of heart failure development. In this review, we summarize cardiac energy metabolism and the important role that fatty acid uptake and metabolism play in this process and how defects in these result in heart failure. We highlight the key role that cardiolipin and sirtuins play in cardiac mitochondrial ß-oxidation. In addition, we review the potential of pharmacological modulation of cardiolipin through the polyphenolic molecule resveratrol as a sirtuin-activator in attenuating mitochondrial dysfunction. Finally, we provide novel experimental evidence that resveratrol treatment increases cardiolipin in isolated H9c2 cardiac myocytes and tetralinoleoylcardiolipin in the heart of the spontaneously hypertensive rat and hypothesize that this leads to improvement in mitochondrial function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Assuntos
Cardiolipinas/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Sirtuínas/metabolismo , Animais , Humanos , Oxirredução
18.
J Biol Chem ; 290(17): 10981-93, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25759382

RESUMO

Doxorubicin (DOX) is a chemotherapeutic agent effective in the treatment of many cancers. However, cardiac dysfunction caused by DOX limits its clinical use. DOX is believed to be harmful to cardiomyocytes by interfering with the mitochondrial phospholipid cardiolipin and causing inefficient electron transfer resulting in the production of reactive oxygen species (ROS). Sirtuin-3 (SIRT3) is a class III lysine deacetylase that is localized to the mitochondria and regulates mitochondrial respiration and oxidative stress resistance enzymes such as superoxide dismutase-2 (SOD2). The purpose of this study was to determine whether SIRT3 prevents DOX-induced mitochondrial ROS production. Administration of DOX to mice suppressed cardiac SIRT3 expression, and DOX induced a dose-dependent decrease in SIRT3 and SOD2 expression in H9c2 cardiomyocytes. SIRT3-null mouse embryonic fibroblasts produced significantly more ROS in the presence of DOX compared with wild-type cells. Overexpression of wild-type SIRT3 increased cardiolipin levels and rescued mitochondrial respiration and SOD2 expression in DOX-treated H9c2 cardiomyocytes and attenuated the amount of ROS produced following DOX treatment. These effects were absent when a deacetylase-deficient SIRT3 was expressed in H9c2 cells. Our results suggest that overexpression of SIRT3 attenuates DOX-induced ROS production, and this may involve increased SOD2 expression and improved mitochondrial bioenergetics. SIRT3 activation could be a potential therapy for DOX-induced cardiac dysfunction.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Sirtuína 3/biossíntese , Animais , Antibióticos Antineoplásicos/farmacologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Linhagem Celular , Doxorrubicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Cardiopatias/enzimologia , Cardiopatias/genética , Cardiopatias/patologia , Camundongos , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Consumo de Oxigênio/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética
19.
Biochim Biophys Acta ; 1832(10): 1723-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707558

RESUMO

Resveratrol (RESV) is a polyphenol with pleiotropic effects that include reduction of oxidative stress and increased vascular nitric oxide (NO) production. However, whether or not RESV can prevent rises in blood pressure (BP) is controversial and remains to be firmly established. The purpose of this study was to determine whether RESV attenuates elevated BP and subsequent adaptive cardiac hypertrophy and to better understand the mechanisms involved. The spontaneously hypertensive rat (SHR) and the angiotensin (Ang)-II infused mouse were used as hypertensive models. Compared to a standard control diet, consumption of diets containing RESV by SHRs and Ang-II hypertensive mice, markedly prevented rises in systolic BP. In addition, flow-mediated vasodilation was significantly improved by RESV in SHRs. RESV also reduced serum and cardiac levels of the lipid peroxidation by-product, 4-hydroxy-2-nonenal in the hypertensive rodents and inhibited the production of superoxide in human-derived endothelial cells. Analysis of mesenteric arteries from SHRs and Ang-II infused mice demonstrated that RESV increased endothelial NO synthase (eNOS) phosphorylation by enhancing the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signal transduction pathway. Moreover, RESV reduced hypertrophic growth of the myocardium through reduced hemodynamic load and inhibition of the p70 S6 kinase pro-hypertrophic signaling cascade. Overall, we show that high dose RESV reduces oxidative stress, improves vascular function, attenuates high BP and prevents cardiac hypertrophy through the preservation of the LKB1-AMPK-eNOS signaling axis.


Assuntos
Cardiomegalia/prevenção & controle , Hipertensão/prevenção & controle , Estilbenos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Ratos , Resveratrol
20.
Am J Physiol Endocrinol Metab ; 305(2): E243-53, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23695218

RESUMO

Because doxorubicin (DOX)-containing chemotherapy causes left ventricular (LV) dysfunction and remodeling that can progress to heart failure, strategies to alleviate DOX cardiotoxicity are necessary to improve health outcomes of patients surviving cancer. Although clinical evidence suggests that aerobic exercise training (ET) can prevent cardiotoxicity in patients undergoing DOX chemotherapy, the physiological mechanisms involved have not been extensively studied, nor is it known whether compounds [such as resveratrol (RESV)] have similar beneficial effects. With the use of a murine model of chronic DOX exposure, this study compared the efficacy of modest ET to RESV treatment on exercise performance, LV remodeling, and oxidative stress resistance. Mice were divided into four groups that received saline, DOX (8 mg/kg ip, one time per week), DOX + RESV (4 g/kg diet, ad libitum), and DOX + ET (45 min of treadmill exercise, 5 days/wk) for 8 wk. LV function and morphology were evaluated by in vivo echocardiography. DOX caused adverse LV remodeling that was partially attenuated by modest ET and completely prevented by RESV. These effects were paralleled by improvements in exercise performance. The cardioprotective properties of ET and RESV were associated with reduced levels of atrial natriuretic peptide and the lipid peroxidation by-product, 4-hydroxy-2-nonenal. In addition, ET and RESV increased the expression of cardiac sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a, superoxide dismutase, mitochondrial electron transport chain complexes, and mitofusin-1 and -2 in mice administered DOX. Compared with modest ET, RESV more effectively prevented DOX-induced LV remodeling and was associated with the reduction of DOX-induced oxidative stress. Our findings have important implications for protecting patients against DOX-associated cardiac injury.


Assuntos
Antibióticos Antineoplásicos/antagonistas & inibidores , Antibióticos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Doxorrubicina/antagonistas & inibidores , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Condicionamento Físico Animal/fisiologia , Estilbenos/farmacologia , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/fisiologia , Western Blotting , Suplementos Nutricionais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Cardiopatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Resveratrol , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA