Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Clin Obes ; 14(3): e12659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602039

RESUMO

Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.


Assuntos
Obesidade , Receptor Tipo 4 de Melanocortina , Humanos , Obesidade/terapia , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Hiperfagia , Transdução de Sinais
2.
Orphanet J Rare Dis ; 18(1): 12, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647077

RESUMO

BACKGROUND: Bardet-Biedl syndrome is a rare genetic disease associated with hyperphagia and early-onset, severe obesity. There is limited evidence on how hyperphagia and obesity affect health-related quality of life in patients with Bardet-Biedl syndrome, and on how management of these symptoms may influence disease burden. This analysis evaluated changes in health-related quality of life in adults and children with Bardet-Biedl syndrome in a Phase 3 trial following 1 year of setmelanotide treatment (ClinicalTrials.gov identifier: NCT03746522). METHODS: Patients with Bardet-Biedl syndrome and obesity received 52 weeks of treatment with setmelanotide and completed various self-reported health-related quality of life measures. Patients aged < 18 years or their caregiver completed the Pediatric Quality of Life Inventory (PedsQL; meaningful improvement, 4.4-point change); adults aged ≥ 18 years completed the Impact of Weight on Quality of Life Questionnaire-Lite (IWQOL-Lite; meaningful improvement range, 7.7-12-point change). Descriptive outcomes were reported in patients with data both at active treatment baseline and after 52 weeks of treatment. RESULTS: Twenty patients (< 18 years, n = 9; ≥ 18 years, n = 11) reported health-related quality of life at baseline and 52 weeks. For children and adolescents, PedsQL score mean change from baseline after 52 weeks was + 11.2; all patients with PedsQL impairment at baseline (n = 4) experienced clinically meaningful improvement. In adults, IWQOL-Lite score mean change from baseline was + 12.0. Of adults with IWQOL-Lite impairment at baseline (n = 8), 62.5% experienced clinically meaningful improvement. In adults, IWQOL-Lite score was significantly correlated with changes in percent body weight (P = 0.0037) and body mass index (P = 0.0098). CONCLUSIONS: After 1 year of setmelanotide, patients reported clinically meaningful improvements across multiple health-related quality of life measures. This study highlights the need to address the impaired health-related quality of life in Bardet-Biedl syndrome, and supports utility of setmelanotide for reducing this burden. Trial Registration NCT03746522. Registered November 19, 2018, https://clinicaltrials.gov/ct2/show/NCT03746522 .


Assuntos
Síndrome de Bardet-Biedl , Qualidade de Vida , Adolescente , Adulto , Humanos , Criança , Obesidade , Hiperfagia
3.
Hum Genet ; 142(1): 1-9, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35941319

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but highly variable expressivity. In most patients, Next Generation Sequencing (NGS) technologies allow the identification of a loss-of-function pathogenic variant in the NF1 gene, a negative regulator of the RAS-MAPK pathway. We describe the 5-year diagnosis wandering of a patient with a clear NF1 clinical diagnosis, but no molecular diagnosis using standard molecular technologies. The patient presented with a typical NF1 phenotype but NF1 targeted NGS, NF1 transcript analysis, MLPA, and array comparative genomic hybridization failed to reveal a genetic aberration. After 5 years of unsuccessful investigations, trio WGS finally identified a de novo mosaic (VAF ~ 14%) 24.6 kb germline deletion encompassing the promoter and first exon of NF1. This case report illustrates the relevance of WGS to detect structural variants including copy number variants that would be missed by alternative approaches. The identification of the causal pathogenic variant allowed a tailored genetic counseling with a targeted non-invasive prenatal diagnosis by detecting the deletion in plasmatic cell-free DNA from the proband's pregnant partner. This report clearly highlights the need to make WGS a clinically accessible test, offering a tremendous opportunity to identify a molecular diagnosis for otherwise unsolved cases.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Genes da Neurofibromatose 1 , Hibridização Genômica Comparativa , Éxons , Sequenciamento Completo do Genoma
4.
Eur J Hum Genet ; 30(3): 291-297, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897289

RESUMO

Individuals with the three base pair deletion NM_000267.3(NF1):c.2970_2972del p.(Met992del) have been recognised to present with a milder neurofibromatosis type 1 (NF1) phenotype characterised by café-au-lait macules (CALs) and intertriginous freckling, as well as a lack of cutaneous, subcutaneous and plexiform neurofibromas and other NF1-associated complications. Examining large cohorts of patients over time with this specific genotype is important to confirm the presentation and associated risks of this variant across the lifespan. Forty-one individuals with the in-frame NF1 deletion p.Met992del were identified from 31 families. Clinicians completed a standardised clinical questionnaire for each patient and the resulting data were collated and compared to published cohorts. Thirteen patients have been previously reported, and updated clinical information has been obtained for these individuals. Both CALs and intertriginous freckling were present in the majority of individuals (26/41, 63%) and the only confirmed features in 11 (27%). 34/41 (83%) of the cohort met NIH diagnostic criteria. There was a notable absence of all NF1-associated tumour types (neurofibroma and glioma). Neurofibroma were observed in only one individual-a subcutaneous lesion (confirmed histologically). Nineteen individuals were described as having a learning disability (46%). This study confirms that individuals with p.Met992del display a mild tumoural phenotype compared to those with 'classical', clinically diagnosed NF1, and this appears to be the case longitudinally through time as well as at presentation. Learning difficulties, however, appear to affect a significant proportion of NF1 subjects with this phenotype. Knowledge of this genotype-phenotype association is fundamental to accurate prognostication for families and caregivers.


Assuntos
Neurofibroma , Neurofibromatose 1 , Manchas Café com Leite/genética , Estudos de Associação Genética , Humanos , Estudos Longitudinais , Neurofibroma/genética , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia
5.
Sci Rep ; 11(1): 16412, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385517

RESUMO

Cohen syndrome (CS) is a rare syndromic form of rod-cone dystrophy. Recent case reports have suggested that cystoid maculopathy (CM) could affect CS patients with an early onset and high prevalence. Our study aims at improving our understanding and management of CM in CS patients through a retrospective case series of ten CS patients with identified pathogenic variants in VPS13B. Longitudinal optical coherence tomography (OCT) imaging was performed and treatment with carbonic anhydrase inhibitors (CAI) was provided to reduce the volume of cystoid spaces. CM affected eight out of ten patients in our cohort. The youngest patient showed a strong progression of macular cysts from the age of 4.5 to 5 years despite oral CAI medication. Other teenage and young adult patients showed stable macular cysts with and without treatment. One patient showed a moderate decrease of cystoid spaces in the absence of treatment at 22 years of age. Through a correlative analysis we found that the volume of cystoid spaces was positively correlated to the thickness of peripheral and macular photoreceptor-related layers. This study suggests that CAI treatments may not suffice to improve CM in CS patients, and that CM may resolve spontaneously during adulthood as photoreceptor dystrophy progresses.


Assuntos
Dedos/anormalidades , Deficiência Intelectual/patologia , Degeneração Macular/patologia , Edema Macular/patologia , Microcefalia/patologia , Hipotonia Muscular/patologia , Miopia/patologia , Obesidade/patologia , Degeneração Retiniana/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Dedos/patologia , Humanos , Masculino , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Adulto Jovem
6.
Cancers (Basel) ; 13(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199217

RESUMO

Complete deletion of the NF1 gene is identified in 5-10% of patients with neurofibromatosis type 1 (NF1). Several studies have previously described particularly severe forms of the disease in NF1 patients with deletion of the NF1 locus, but comprehensive descriptions of large cohorts are still missing to fully characterize this contiguous gene syndrome. NF1-deleted patients were enrolled and phenotypically characterized with a standardized questionnaire between 2005 and 2020 from a large French NF1 cohort. Statistical analyses for main NF1-associated symptoms were performed versus an NF1 reference population. A deletion of the NF1 gene was detected in 4% (139/3479) of molecularly confirmed NF1 index cases. The median age of the group at clinical investigations was 21 years old. A comprehensive clinical assessment showed that 93% (116/126) of NF1-deleted patients fulfilled the NIH criteria for NF1. More than half had café-au-lait spots, skinfold freckling, Lisch nodules, neurofibromas, neurological abnormalities, and cognitive impairment or learning disabilities. Comparison with previously described "classic" NF1 cohorts showed a significantly higher proportion of symptomatic spinal neurofibromas, dysmorphism, learning disabilities, malignancies, and skeletal and cardiovascular abnormalities in the NF1-deleted group. We described the largest NF1-deleted cohort to date and clarified the more severe phenotype observed in these patients.

7.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835378

RESUMO

PURPOSE: Bardet-Biedl syndrome (BBS) is a ciliopathy with a wide spectrum of symptoms due to primary cilia dysfunction, including genitourinary developmental anomalies as well as impaired reproduction, particularly in males. Primary cilia are known to be required at the following steps of reproduction function: (i) genitourinary organogenesis, (ii) in fetal firing of hypothalamo-pituitary axe, (iii) sperm flagellum structure, and (iv) first zygotic mitosis conducted by proximal sperm centriole. BBS phenotype is not fully understood. METHODS: This study explored all steps of reproduction in 11 French male patients with identified BBS mutations. RESULTS: BBS patients frequently presented with genitourinary malformations, such as cryptorchidism (5/11), short scrotum (5/8), and micropenis (5/8), but unexpectedly, with normal testis size (7/8). Ultrasonography highlighted epididymal cysts or agenesis of one seminal vesicle in some cases. Sexual hormones levels were normal in all patients except one. Sperm numeration was normal in 8 out of the 10 obtained samples. Five to 45% of sperm presented a progressive motility. Electron microscopy analysis of spermatozoa did not reveal any homogeneous abnormality. Moreover, a psychological approach pointed to a decreased self-confidence linked to blindness and obesity explaining why so few BBS patients express a child wish. CONCLUSIONS: Primary cilia dysfunction in BBS impacts the embryology of the male genital tract, especially epididymis, penis, and scrotum through an insufficient fetal androgen production. However, in adults, sperm structure does not seem to be impacted. These results should be confirmed in a greater BBS patient cohort, focusing on fertility.


Assuntos
Síndrome de Bardet-Biedl/fisiopatologia , Doenças dos Genitais Masculinos/fisiopatologia , Adolescente , Adulto , Síndrome de Bardet-Biedl/complicações , Doenças dos Genitais Masculinos/etiologia , Genitália Masculina/fisiopatologia , Humanos , Masculino , Análise do Sêmen , Espermatozoides/ultraestrutura , Adulto Jovem
8.
Eur J Med Genet ; 63(4): 103857, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31978614

RESUMO

Frank-ter Haar syndrome (FTHS) is a rare autosomal recessive syndrome resulting from mutations in the SH3PXD2B gene involved in the formation of podosomes and invadopodia which have a role in extracellular matrix remodelling and cell migration. FTHS is characterized by facial dysmorphism, megalocornea, inconstant glaucoma, variable developmental delay, skeletal and cardiac anomalies. To date, 40 patients have been reported in the literature with a clinical diagnosis of FTHS, only 20 patients having identified mutations. We present a review of these 20 reported patients and describe a patient born to non-consanguineous parents, with intrauterine growth retardation, hypotonia, congenital glaucoma, caudal appendix, scoliosis, camptodactyly, ventricular septal defect, thin corpus callosum and craniofacial features suggestive of FTHS. Clinical evolution resulted in buphthalmos worsening, coarsening of the facial features and respiratory failure leading to death at 4,5 months. Diagnosis was confirmed by the identification of a previously known homozygous mutation c.969delG, p.(Arg324Glyfs*19) in SH3PXD2B. This is the first description of very severe phenotype with lethal respiratory impairment in FTHS. Since very few patients are described in the literature, and 2 out of the 3 patients carrying the c.969delG mutation had a favourable clinical course, more cases are needed to better characterize the phenotype and understand the natural history of this syndrome. Furthermore, we hypothesize that the alteration of podosomes function could lead to a reduction of the extracellular matrix degradation and accumulation of the latter in the extracellular space, which might explain the coarsening of the facial features and the severe refractory glaucoma.


Assuntos
Anormalidades Craniofaciais , Cardiopatias Congênitas , Osteocondrodisplasias/congênito , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Feminino , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo
9.
Genet Med ; 22(1): 181-188, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31363182

RESUMO

PURPOSE: Kabuki syndrome (KS) (OMIM 147920 and 300867) is a rare genetic disorder characterized by specific facial features, intellectual disability, and various malformations. Immunopathological manifestations seem prevalent and increase the morbimortality. To assess the frequency and severity of the manifestations, we measured the prevalence of immunopathological manifestations as well as genotype-phenotype correlations in KS individuals from a registry. METHODS: Data were for 177 KS individuals with KDM6A or KMT2D pathogenic variants. Questionnaires to clinicians were used to assess the presence of immunodeficiency and autoimmune diseases both on a clinical and biological basis. RESULTS: Overall, 44.1% (78/177) and 58.2% (46/79) of KS individuals exhibited infection susceptibility and hypogammaglobulinemia, respectively; 13.6% (24/177) had autoimmune disease (AID; 25.6% [11/43] in adults), 5.6% (10/177) with ≥2 AID manifestations. The most frequent AID manifestations were immune thrombocytopenic purpura (7.3% [13/177]) and autoimmune hemolytic anemia (4.0% [7/177]). Among nonhematological manifestations, vitiligo was frequent. Immune thrombocytopenic purpura was frequent with missense versus other types of variants (p = 0.027). CONCLUSION: The high prevalence of immunopathological manifestations in KS demonstrates the importance of systematic screening and efficient preventive management of these treatable and sometimes life-threatening conditions.


Assuntos
Doenças Autoimunes/epidemiologia , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/complicações , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Doenças da Imunodeficiência Primária/epidemiologia , Doenças Vestibulares/complicações , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/imunologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Doenças Hematológicas/genética , Doenças Hematológicas/imunologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação , Prevalência , Sistema de Registros , Índice de Gravidade de Doença , Doenças Vestibulares/genética , Doenças Vestibulares/imunologia , Adulto Jovem
10.
Hum Mutat ; 41(1): 240-254, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549751

RESUMO

Polydactyly is one of the most frequent inherited defects of the limbs characterized by supernumerary digits and high-genetic heterogeneity. Among the many genes involved, either in isolated or syndromic forms, eight have been implicated in postaxial polydactyly (PAP). Among those, IQCE has been recently identified in a single consanguineous family. Using whole-exome sequencing in patients with uncharacterized ciliopathies, including PAP, we identified three families with biallelic pathogenic variations in IQCE. Interestingly, the c.895_904del (p.Val301Serfs*8) was found in all families without sharing a common haplotype, suggesting a recurrent mechanism. Moreover, in two families, the systemic phenotype could be explained by additional pathogenic variants in known genes (TULP1, ATP6V1B1). RNA expression analysis on patients' fibroblasts confirms that the dysfunction of IQCE leads to the dysregulation of genes associated with the hedgehog-signaling pathway, and zebrafish experiments demonstrate a full spectrum of phenotypes linked to defective cilia: Body curvature, kidney cysts, left-right asymmetry, misdirected cilia in the pronephric duct, and retinal defects. In conclusion, we identified three additional families confirming IQCE as a nonsyndromic PAP gene. Our data emphasize the importance of taking into account the complete set of variations of each individual, as each clinical presentation could finally be explained by multiple genes.


Assuntos
Ciliopatias/diagnóstico , Ciliopatias/genética , Dedos/anormalidades , Predisposição Genética para Doença , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Fenótipo , Polidactilia/diagnóstico , Polidactilia/genética , Dedos do Pé/anormalidades , Animais , Consanguinidade , Imunofluorescência , Perfilação da Expressão Gênica , Estudos de Associação Genética/métodos , Homozigoto , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Linhagem , Transdução de Sinais , Transcriptoma , Sequenciamento do Exoma , Peixe-Zebra
11.
Adv Exp Med Biol ; 1185: 189-195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884610

RESUMO

CEP290 mutations cause a spectrum of ciliopathies, including Leber congenital amaurosis. Milder retinal diseases have been ascribed to exclusion of CEP290 mutant exons through basal exon skipping (BES) and/or nonsense-associated altered splicing (NAS). Here, we report two siblings with some preserved vision despite biallelism for presumably severe CEP290 mutations: a maternal splice site change in intron 18 (c.1824 + 3A > G) and a paternal c.6869dup (p.Asn2290Lysfs∗6) in exon 50 that introduces a premature termination codon (PTC) within the same exon. Analyzing mRNAs from fibroblasts of the two siblings, we detected no BES or NAS which could have enabled the production of PTC-free CEP290 isoforms from the paternal allele. In contrast, we reveal partial alteration of exon 18 donor splice site, allowing the transcription of some correctly spliced CEP290 mRNAs from the maternal allele which likely account for the mild retinal disease. This observation adds further variability to the mechanisms underlying CEP290 pleiotropy.


Assuntos
Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Códon sem Sentido , Proteínas do Citoesqueleto/genética , Éxons , Splicing de RNA , Doenças Retinianas/genética , Humanos , Mutação , Irmãos
12.
Genes (Basel) ; 10(9)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443423

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but high variable expressivity. NF1 is caused by loss-of-function mutations in the NF1 gene, a negative regulator of the RAS-MAPK pathway. The NF1 gene has one of the highest mutation rates in human disorders, which may explain the outbreak of independent de novo variants in the same family. Here, we report the co-occurrence of pathogenic variants in the NF1 and SPRED1 genes in six families with NF1 and Legius syndrome, using next-generation sequencing. In five of these families, we observed the co-occurrence of two independent NF1 variants. All NF1 variants were classified as pathogenic, according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines. In the sixth family, one sibling inherited a complete deletion of the NF1 gene from her mother and carried a variant of unknown significance in the SPRED1 gene. This variant was also present in her brother, who was diagnosed with Legius syndrome, a differential diagnosis of NF1. This work illustrates the complexity of molecular diagnosis in a not-so-rare genetic disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Manchas Café com Leite/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Fenótipo , Adolescente , Adulto , Manchas Café com Leite/complicações , Manchas Café com Leite/patologia , Criança , Feminino , Humanos , Masculino , Mutação , Neurofibromatose 1/complicações , Neurofibromatose 1/patologia , Linhagem
13.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422817

RESUMO

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Assuntos
RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas/genética , RNA/genética , Humanos
14.
Exp Eye Res ; 186: 107721, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31302159

RESUMO

Cilia are highly conserved and ubiquitously expressed organelles. Ciliary defects of genetic origins lead to ciliopathies, in which retinal degeneration (RD) is one cardinal clinical feature. In order to efficiently find and design new therapeutic strategies the underlying mechanism of retinal degeneration of three murine model was compared. The rodent models correspond to three emblematic ciliopathies, namely: Bardet-Biedl Syndrome (BBS), Alström Syndrome (ALMS) and CEP290-mediated Leber Congenital Amaurosis (LCA). Scotopic rodent electroretinography (ERG) was used to test the retinal function of mice, Transmitted Electron microscopy (T.E.M) was performed to assess retinal structural defects and real-time PCR for targeted genes was used to monitor the expression levels of the major apoptotic Caspase-related pathways in retinal extracts to identify pathological pathways driving the RD in order to identify potential therapeutic targets. We found that BBS and CEP290-mediated LCA mouse models exhibit perinatal retinal degeneration associated with rhodopsin mislocalization in the photoreceptor and the induction of an Endoplasmic Reticulum (ER) stress. On the other hand, the tested ALMS mouse model, displayed a slower degeneration phenotype, with no Rhodopsin mislocalization nor ER-stress activity. Our data points out that behind the general phenotype of vision loss associated with these ciliopathies, the mechanisms and kinetics of disease progression are different.


Assuntos
Ciliopatias/complicações , Retina , Degeneração Retiniana , Animais , Síndrome de Bardet-Biedl/complicações , Modelos Animais de Doenças , Eletrorretinografia , Amaurose Congênita de Leber/complicações , Camundongos , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Rodopsina/metabolismo
15.
Front Genet ; 10: 504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191616

RESUMO

Amelogenesis imperfecta (AI) is a heterogeneous group of rare inherited diseases presenting with enamel defects. More than 30 genes have been reported to be involved in syndromic or non-syndromic AI and new genes are continuously discovered (Smith et al., 2017). Whole-exome sequencing was performed in a consanguineous family. The affected daughter presented with intra-uterine and postnatal growth retardation, skeletal dysplasia, macrocephaly, blue sclerae, and hypoplastic AI. We identified a homozygous missense mutation in exon 11 of SLC10A7 (NM_001300842.2: c.908C>T; p.Pro303Leu) segregating with the disease phenotype. We found that Slc10a7 transcripts were expressed in the epithelium of the developing mouse tooth, bones undergoing ossification, and in vertebrae. Our results revealed that SLC10A7 is overexpressed in patient fibroblasts. Patient cells display altered intracellular calcium localization suggesting that SLC10A7 regulates calcium trafficking. Mutations in this gene were previously reported to cause a similar syndromic phenotype, but with more severe skeletal defects (Ashikov et al., 2018;Dubail et al., 2018). Therefore, phenotypes resulting from a mutation in SLC10A7 can vary in severity. However, AI is the key feature indicative of SLC10A7 mutations in patients with skeletal dysplasia. Identifying this important phenotype will improve clinical diagnosis and patient management.

16.
Methods Mol Biol ; 1922: 407-452, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838594

RESUMO

Rare genetic disorders are often challenging to diagnose. Anomalies of tooth number, shape, size, mineralized tissue structure, eruption, and resorption may exist as isolated symptoms or diseases but are often part of the clinical synopsis of numerous syndromes (Bloch-Zupan A, Sedano H, Scully C. Dento/oro/craniofacial anomalies and genetics, 1st edn. Elsevier, Boston, MA, 2012). Concerning amelogenesis imperfecta (AI), for example, mutations in a number of genes have been reported to cause isolated AI, including AMELX, ENAM, KLK4, MMP20, FAM83H, WDR72, C4orf26, SLC24A4, and LAMB3. In addition, many other genes such as DLX3, CNNM4, ROGDI, FAM20A, STIM1, ORAI1, and LTBP3 have been shown to be involved in developmental syndromes with enamel defects. The clinical presentation of the enamel phenotype (hypoplastic, hypomineralized, hypomature, or a combination of severities) alone does not allow a reliable prediction of possible causative genetic mutations. Understanding the potential genetic cause(s) of rare diseases is critical for overall health management of affected patient. One effective strategy to reach a genetic diagnosis is to sequence a selected gene panel chosen for a determined range of phenotypes. Here we describe a laboratory protocol to set up a specific gene panel for orodental diseases.


Assuntos
Anormalidades Craniofaciais/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Raras/genética , Anormalidades Dentárias/genética , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/genética , Anormalidades Craniofaciais/diagnóstico , DNA/genética , Desenho de Equipamento , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Doenças Raras/diagnóstico , Anormalidades Dentárias/diagnóstico
17.
Clin Genet ; 95(3): 384-397, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30614526

RESUMO

Bardet-Biedl syndrome (BBS) is an emblematic ciliopathy associated with retinal dystrophy, obesity, postaxial polydactyly, learning disabilities, hypogonadism and renal dysfunction. Before birth, enlarged/cystic kidneys as well as polydactyly are the hallmark signs of BBS to consider in absence of familial history. However, these findings are not specific to BBS, raising the problem of differential diagnoses and prognosis. Molecular diagnosis during pregnancies remains a timely challenge for this heterogeneous disease (22 known genes). We report here the largest cohort of BBS fetuses to better characterize the antenatal presentation. Prenatal ultrasound (US) and/or autopsy data from 74 fetuses with putative BBS diagnosis were collected out of which molecular diagnosis was established in 51 cases, mainly in BBS genes (45 cases) following the classical gene distribution, but also in other ciliopathy genes (6 cases). Based on this, an updated diagnostic decision tree is proposed. No genotype/phenotype correlation could be established but postaxial polydactyly (82%) and renal cysts (78%) were the most prevalent symptoms. However, autopsy revealed polydactyly that was missed by prenatal US in 55% of the cases. Polydactyly must be carefully looked for in pregnancies with apparently isolated renal anomalies in fetuses.


Assuntos
Síndrome de Bardet-Biedl/diagnóstico , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Alelos , Substituição de Aminoácidos , Autopsia , Síndrome de Bardet-Biedl/genética , Biópsia , Genótipo , Humanos , Mutação , Diagnóstico Pré-Natal , Sequenciamento do Exoma
18.
Hum Mol Genet ; 27(15): 2689-2702, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771326

RESUMO

CEP290 mutations cause a spectrum of ciliopathies from Leber congenital amaurosis type 10 (LCA10) to embryo-lethal Meckel syndrome (MKS). Using panel-based molecular diagnosis testing for inherited retinal diseases, we identified two individuals with some preserved vision despite biallelism for presumably truncating CEP290 mutations. The first one carried a homozygous 1 base pair deletion in Exon 17, introducing a premature termination codon (PTC) in Exon 18 (c.1666del; p.Ile556Phefs*17). mRNA analysis revealed a basal exon skipping (BES) of Exon 18, providing mutant cells with the ability to escape protein truncation, while disrupting the reading frame in controls. The second individual harbored compound heterozygous nonsense mutations in Exon 8 (c.508A>T, p.Lys170*) and Exon 32 (c.4090G>T, p.Glu1364*), respectively. Some CEP290 lacking Exon 8 were detected in mutant fibroblasts but not in controls whereas some skipping of Exon 32 occurred in both lines, but with higher amplitude in the mutant. Considering that the deletion of either exon maintains the reading frame in either line, skipping in mutant cells likely involves nonsense-associated altered splicing alone (Exon 8), or with BES (Exon 32). Skipping of PTC-containing exons in mutant cells allowed production of CEP290 isoforms with preserved ability to assemble into a high molecular weight complex and to interact efficiently with proteins important for cilia formation and intraflagellar trafficking. In contrast, studying LCA10 and MKS fibroblasts we show moderate to severe cilia alterations, providing support for a correlation between disease severity and the ability of cells to express shortened, yet functional, CEP290 isoforms.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Doenças Retinianas/genética , Adolescente , Adulto , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Criança , Cílios/fisiologia , Códon sem Sentido , Códon de Terminação , Proteínas do Citoesqueleto , Éxons , Proteínas do Olho/metabolismo , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Mutação , Transporte Proteico , Splicing de RNA , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Proteínas Supressoras de Tumor/metabolismo
19.
Am J Hum Genet ; 101(3): 428-440, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28823707

RESUMO

Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare recessive disorders with prenatal onset, characterized by hypoplasia of pons and cerebellum. Mutations in a small number of genes have been reported to cause PCH, and the vast majority of PCH cases are explained by mutations in TSEN54, which encodes a subunit of the tRNA splicing endonuclease complex. Here we report three families with homozygous truncating mutations in TBC1D23 who display moderate to severe intellectual disability and microcephaly. MRI data from available affected subjects revealed PCH, small normally proportioned cerebellum, and corpus callosum anomalies. Furthermore, through in utero electroporation, we show that downregulation of TBC1D23 affects cortical neuron positioning. TBC1D23 is a member of the Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs). Members of this protein family negatively regulate RAB proteins and modulate the signaling between RABs and other small GTPases, some of which have a crucial role in the trafficking of intracellular vesicles and are involved in neurological disorders. Here, we demonstrate that dense core vesicles and lysosomal trafficking dynamics are affected in fibroblasts harboring TBC1D23 mutation. We propose that mutations in TBC1D23 are responsible for a form of PCH with small, normally proportioned cerebellum and should be screened in individuals with syndromic pontocereballar hypoplasia.


Assuntos
Doenças Cerebelares/genética , Cerebelo/anormalidades , Proteínas Ativadoras de GTPase/genética , Homozigoto , Microcefalia/genética , Mutação , Malformações do Sistema Nervoso/genética , Neurônios/patologia , Adolescente , Animais , Células Cultivadas , Doenças Cerebelares/patologia , Cerebelo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Camundongos , Microcefalia/patologia , Malformações do Sistema Nervoso/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Crescimento Neuronal , Neurônios/metabolismo , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA