Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(28): e202318805, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38687094

RESUMO

The adhesion of circulating tumor cells (CTCs) to the endothelial lumen and their extravasation to surrounding tissues are crucial in the seeding of metastases and remain the most complex events of the metastatic cascade to study. Integrins expressed on CTCs are major regulators of the extravasation process. This knowledge is primarily derived from animal models and biomimetic systems based on artificial endothelial layers, but these methods have ethical or technical limitations. We present a versatile microfluidic device to study cancer cell extravasation that mimics the endothelial barrier by using a porous membrane functionalized with DNA origami nanostructures (DONs) that display nanoscale patterns of adhesion peptides to circulating cancer cells. The device simulates physiological flow conditions and allows direct visualization of cell transmigration through microchannel pores using 3D confocal imaging. Using this system, we studied integrin-specific adhesion in the absence of other adhesive events. Specifically, we show that the transmigration ability of the metastatic cancer cell line MDA-MB-231 is influenced by the type, distance, and density of adhesion peptides present on the DONs. Furthermore, studies with mixed ligand systems indicate that integrins binding to RGD (arginine-glycine-aspartic acid) and IDS (isoleucine-aspartic acid-serine) did not synergistically enhance the extravasation process of MDA-MB-231 cells.


Assuntos
DNA , Células Neoplásicas Circulantes , Humanos , DNA/química , DNA/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Linhagem Celular Tumoral , Técnicas Analíticas Microfluídicas , Nanoestruturas/química , Adesão Celular , Comunicação Celular
2.
Nano Lett ; 24(5): 1611-1619, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38267020

RESUMO

The nanoscale arrangement of ligands can have a major effect on the activation of membrane receptor proteins and thus cellular communication mechanisms. Here we report on the technological development and use of tailored DNA origami-based molecular rulers to fabricate "Multiscale Origami Structures As Interface for Cells" (MOSAIC), to enable the systematic investigation of the effect of the nanoscale spacing of epidermal growth factor (EGF) ligands on the activation of the EGF receptor (EGFR). MOSAIC-based analyses revealed that EGF distances of about 30-40 nm led to the highest response in EGFR activation of adherent MCF7 and Hela cells. Our study emphasizes the significance of DNA-based platforms for the detailed investigation of the molecular mechanisms of cellular signaling cascades.


Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Humanos , DNA/química , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Ligantes , Transdução de Sinais
3.
Nanoscale Adv ; 5(15): 3914-3923, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37496619

RESUMO

Microfluidic droplets are an important tool for studying and mimicking biological systems, e.g., to examine with high throughput the interaction of biomolecular components and the functionality of natural cells, or to develop basic principles for the engineering of artificial cells. Of particular importance is the approach to generate a biomimetic membrane by supramolecular self-assembly of nanoparticle components dissolved in the aqueous phase of the droplets at the inner water/oil interface, which can serve both to mechanically reinforce the droplets and as an interaction surface for cells and other components. While this interfacial assembly driven by electrostatic interaction of surfactants is quite well developed for water/mineral oil (W/MO) systems, no approaches have yet been described to exploit this principle for water/fluorocarbon oil (W/FO) emulsion droplets. Since W/FO systems exhibit not only better compartmentalization but also gas solubility properties, which is particularly crucial for live cell encapsulation and cultivation, we report here the investigation of charged fluorosurfactants for the self-assembly of DNA-modified silica nanoparticles (SiNP-DNA) at the interface of microfluidic W/FO emulsions. To this end, an efficient multicomponent Ugi reaction was used to synthesize the novel fluorosurfactant M4SURF to study the segregation and accumulation of negatively charged SiNP-DNA at the inner interface of microfluidic droplets. Comparative measurements were performed with the negatively charged fluorosurfactant KRYTOX, which can also induce SiNP-DNA segregation in the presence of cations. The segregation dynamics is characterized and preliminary results of cell encapsulation in the SiNP-DNA functionalized droplets are shown.

4.
ACS Nano ; 17(7): 6719-6730, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36990450

RESUMO

The immunological response of mast cells is controlled by the multivalent binding of antigens to immunoglobulin E (IgE) antibodies bound to the high-affinity receptor FcεRI on the cell membrane surface. However, the spatial organization of antigen-antibody-receptor complexes at the nanometer scale and the structural constraints involved in the initial events at the cell surface are not yet fully understood. For example, it is unclear what influence the affinity and nanoscale distance between the binding partners involved have on the activation of mast cells to degranulate inflammatory mediators from storage granules. We report the use of DNA origami nanostructures (DON) functionalized with different arrangements of the haptenic 2,4-dinitrophenyl (DNP) ligand to generate multivalent artificial antigens with full control over valency and nanoscale ligand architecture. To investigate the spatial requirements for mast cell activation, the DNP-DON complexes were initially used in surface plasmon resonance (SPR) analysis to study the binding kinetics of isolated IgE under physiological conditions. The most stable binding was observed in a narrow window of approximately 16 nm spacing between haptens. In contrast, affinity studies with FcεRI-linked IgE antibodies on the surface of rat basophilic leukemia cells (RBL-2H3) indicated virtually no distance-dependent variations in the binding of the differently structured DNP-DON complexes but suggested a supramolecular oligovalent nature of the interaction. Finally, the use of DNP-DON complexes for mast cell activation revealed that antigen-directed tight assembly of antibody-receptor complexes is the critical factor for triggering degranulation, even more critical than ligand valence. Our study emphasizes the significance of DNA nanostructures for the study of fundamental biological processes.


Assuntos
Mastócitos , Nanoestruturas , Ratos , Animais , Mastócitos/fisiologia , Ligantes , Antígenos , Haptenos/química , Imunoglobulina E/metabolismo , Receptores de IgE , Nanoestruturas/química , DNA
5.
Angew Chem Int Ed Engl ; 59(43): 19016-19020, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32681679

RESUMO

We report on the directed postsynthetic functionalization of soft DNA nanocomposite materials with proteins. Using the example of the functionalization of silica nanoparticle-modified DNA polymer materials with agonists or antagonists of the epidermal growth factor receptor EGFR cell membrane receptor, we demonstrate that hierarchically structured interfaces to living cells can be established. Owing to the modular design principle, even complex DNA nanostructures can be integrated into the materials, thereby enabling the high-precision arrangement of ligands on the lower nanometer length scale. We believe that such complex biohybrid material systems can be used for new applications in biotechnology.


Assuntos
DNA/química , Proteínas/química , Técnicas de Cultura de Células , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência/métodos , Nanocompostos , Nanopartículas/química , Fosforilação , Dióxido de Silício/química
6.
J Environ Manage ; 261: 110240, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148309

RESUMO

Chlorinated pesticides were extensively produced in the XX century, generating high amounts of toxic wastes often dumped in the surroundings of the production sites, resulting in hot points of soil and groundwater pollution worldwide. This is the case of Bailín landfill, located in Sabiñánigo (Spain), where groundwater is highly polluted with chlorobenzenes (mono, di, tri and tetra) and hexachlorocyclohexanes. This study addresses the abatement of chlorinated organic compounds (COCs) present in the groundwater coming from the Bailín landfill by thermally activated persulfate, PS (TAP). The influence of temperature (30-50 °C) and oxidant concentration (2-40 g L-1) on the efficiency of COCs (initial concentration of COCs = 57.53 mg L-1, determined by the solubility of the pollutants in water) degradation has been investigated. Raising the reaction temperature and PS concentration the degradation of COCs significantly accelerates, as a result of higher production of sulfate radicals. The thermal activation of PS implies side reactions, involving the unproductive decomposition of this oxidant. The activation energy calculated for this reaction (128.48 kJ mol-1) reveals that is slightly more favored by temperature than the oxidation of COCs by sulfate radicals (102.4-115.72 kJ mol-1). At the selected operating conditions (PS = 10 g L-1, 40 °C), the almost complete conversion of COCs and a dechlorination and mineralization degree above 80% were obtained at 168 h reaction time. A kinetic model, able to adequately predict the experimental concentration of COCs when operating at different temperatures and initial concentration of PS has been proposed.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Compostos Orgânicos , Oxirredução , Sulfatos , Instalações de Eliminação de Resíduos
7.
Nat Commun ; 10(1): 5522, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797918

RESUMO

Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on tailorable nanocomposite materials in which silica nanoparticles are interwoven with carbon nanotubes by DNA polymerization. The modular, well controllable and scalable synthesis yields materials whose composition can be gradually adjusted to produce synergistic, non-linear mechanical stiffness and viscosity properties. The materials were exploited as substrata that outperform conventional culture surfaces in the ability to control cellular adhesion, proliferation and transmigration through the hydrogel matrix. The composite materials also enable the construction of layered cell architectures, the expansion of embryonic stem cells by simplified cultivation methods and the on-demand release of uniformly sized stem cell spheroids.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanocompostos/química , Nanotubos de Carbono/química , Dióxido de Silício/química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , DNA/química , DNA/genética , DNA/metabolismo , Humanos , Hidrogéis/química , Células MCF-7 , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura , Resistência à Tração , Viscosidade
8.
Environ Sci Pollut Res Int ; 25(35): 34985-34994, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29446016

RESUMO

This study is focused on the effective removal of recalcitrant pollutants hexaclorocyclohexanes (HCHs, isomers α, ß, γ, and δ) and chlorobenzenes (CBs) present in a real groundwater coming from a landfill of an old lindane factory. Groundwater is characterized by a total organic carbon (TOC) content of 9 mg L-1, pH0 = 7, conductivity = 3.7 mS cm-1, high salt concentration (SO42-, HCO3-, Cl-), and ferrous iron in solution. The experiments were performed using a BDD anode and a carbon felt (CF) cathode at the natural groundwater pH and without addition of supporting electrolyte. The complete depletion of the four HCH isomers and a mineralization degree of 90% were reached at 4-h electrolysis with a current intensity of 400 mA, the residual TOC (0.8 mg L-1) corresponding mainly to formic acid. A parallel series reaction pathway was proposed: HCHs and CBs are transformed into chlorinated and hydroxylated intermediates that are rapidly oxidized to non-toxic carboxylic acids and/or mineralized, leading to a rapid decrease in solution pH.


Assuntos
Hidrocarbonetos Clorados/química , Praguicidas/química , Eliminação de Resíduos Líquidos/métodos , Resíduos/análise , Carbono/química , Ácidos Carboxílicos , Eletrodos , Eletrólise , Água Subterrânea/química , Halogenação , Hexaclorocicloexano , Hidrocarbonetos Clorados/análise , Ferro/química , Minerais/química , Oxirredução , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA