Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 206: 111017, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32120160

RESUMO

Cancer-Associated Fibroblasts (CAFs) contribute to tumour progression and have received significant attention as a therapeutic target. These cells produce growth factors, cytokines and chemokines, stimulating cancer cell proliferation and inhibiting their apoptosis. Recent advances in drug delivery have demonstrated a significant promise of iron oxide nanoparticles in clinics as theranostic agents, mainly due to their magnetic properties. Here, we designed superparamagnetic iron oxide nanoparticles (SPIONs) to induce apoptosis of human fibroblasts. SPIONs were synthesized via co-precipitation method and coated with sodium citrate (SPION_Cit). We assessed the intracellular uptake of SPIONs by human fibroblast cells, as well as their cytotoxicity and ability to induce thermal effects under the magnetic field. The efficiency and time of nanoparticle internalization were assessed by Prussian Blue staining, flow cytometry and transmission electron microscopy. SPIONs_Cit were detected in the cytoplasm of human fibroblasts 15 min after in vitro exposure, entering into cells mainly via endocytosis. Analyses through Cell Titer Blue assay, AnnexinV-fluorescein isothiocyanate (FITC) and propidium iodide (PI) cellular staining demonstrated that concentrations below 8 × 10-2 mg/mL of SPIONs_Cit did not alter cell viability of human fibroblast. Furthermore, it was also demonstrated that SPIONs_Cit associated with alternating current magnetic field were able to induce hyperthermia and human fibroblast cell death in vitro, mainly through apoptosis (83.5%), activating caspase 8 (extrinsic apoptotic via) after a short exposure period. Collectively these findings suggest that our nanoplatform is biocompatible and can be used for therapeutic purposes in human biological systems, such as inducing apoptosis of CAFs.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Férricos/farmacologia , Fibroblastos/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Fibroblastos Associados a Câncer/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/química , Endocitose , Compostos Férricos/química , Citometria de Fluxo , Humanos , Hipertermia Induzida , Nanopartículas Magnéticas de Óxido de Ferro/química , Microscopia Eletrônica de Transmissão , Neoplasias/metabolismo , Neoplasias/patologia
2.
Nanotechnology ; 27(8): 085105, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26820520

RESUMO

The combination of magnetic hyperthermia therapy with the controlled release of chemotherapeutic agents in tumors may be an efficient therapeutic with few side effects because the bioavailability, tolerance and amount of the drug can be optimized. Here, we prepared magnetoliposomes consisting of magnetite nanoparticle cores and the anticancer drug gemcitabine encapsulated by a phospholipid bilayer. The potential of these magnetoliposomes for controlled drug release and cancer treatment via hyperthermic behavior was investigated. The magnetic nanoparticle encapsulation efficiency was dependent on the initial amount of magnetite nanoparticles present at the encapsulation stage; the best formulation was 66%. We chose this formulation to characterize the physicochemical properties of the magnetoliposomes and to encapsulate gemcitabine. The mean particle size and distribution were determined by dynamic light scattering (DLS), and the zeta potential was measured. The magnetoliposome formulations all had acceptable characteristics for systemic administration, with a mean size of approximately 150 nm and a polydispersity index <0.2. The magnetoliposomes were stable in aqueous suspension for at least one week, as determined by DLS. Temperature increases due to the dissipation energy of magnetoliposome suspensions subjected to an applied alternating magnetic field (AMF) were measured at different magnetic field intensities, and the values were appropriated for cancer treatments. The drug release profile at 37 °C showed that 17% of the gemcitabine was released after 72 h. Drug release from magnetoliposomes exposed to an AMF for 5 min reached 70%.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Preparações de Ação Retardada/química , Desoxicitidina/análogos & derivados , Lipossomos/química , Nanopartículas de Magnetita/química , Animais , Antimetabólitos Antineoplásicos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Óxido Ferroso-Férrico/química , Hipertermia Induzida/métodos , Luz , Lipossomos/farmacologia , Campos Magnéticos , Nanopartículas de Magnetita/ultraestrutura , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Tamanho da Partícula , Fotoquimioterapia/métodos , Cultura Primária de Células , Ratos , Ratos Endogâmicos Lew , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA