Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 81(1): 50-63, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115805

RESUMO

Metabolic dysregulation is a known hallmark of cancer progression, yet the oncogenic signals that promote metabolic adaptations to drive metastatic cancer remain unclear. Here, we show that transcriptional repression of mitochondrial deacetylase sirtuin 3 (SIRT3) by androgen receptor (AR) and its coregulator steroid receptor coactivator-2 (SRC-2) enhances mitochondrial aconitase (ACO2) activity to favor aggressive prostate cancer. ACO2 promoted mitochondrial citrate synthesis to facilitate de novo lipogenesis, and genetic ablation of ACO2 reduced total lipid content and severely repressed in vivo prostate cancer progression. A single acetylation mark lysine258 on ACO2 functioned as a regulatory motif, and the acetylation-deficient Lys258Arg mutant was enzymatically inactive and failed to rescue growth of ACO2-deficient cells. Acetylation of ACO2 was reversibly regulated by SIRT3, which was predominantly repressed in many tumors including prostate cancer. Mechanistically, SRC-2-bound AR formed a repressive complex by recruiting histone deacetylase 2 to the SIRT3 promoter, and depletion of SRC-2 enhanced SIRT3 expression and simultaneously reduced acetylated ACO2. In human prostate tumors, ACO2 activity was significantly elevated, and increased expression of SRC-2 with concomitant reduction of SIRT3 was found to be a genetic hallmark enriched in prostate cancer metastatic lesions. In a mouse model of spontaneous bone metastasis, suppression of SRC-2 reactivated SIRT3 expression and was sufficient to abolish prostate cancer colonization in the bone microenvironment, implying this nuclear-mitochondrial regulatory axis is a determining factor for metastatic competence. SIGNIFICANCE: This study highlights the importance of mitochondrial aconitase activity in the development of advanced metastatic prostate cancer and suggests that blocking SRC-2 to enhance SIRT3 expression may be therapeutically valuable. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/1/50/F1.large.jpg.


Assuntos
Aconitato Hidratase/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/secundário , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/enzimologia , Neoplasias da Próstata/patologia , Sirtuína 3/metabolismo , Aconitato Hidratase/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Nus , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Sirtuína 3/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Hepatol ; 63(3): 661-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25937435

RESUMO

BACKGROUND & AIMS: The cancer stem cells (CSCs) have important therapeutic implications for multi-resistant cancers including hepatocellular carcinoma (HCC). Among the key pathways frequently activated in liver CSCs is NF-κB signaling. METHODS: We evaluated the CSCs-depleting potential of NF-κB inhibition in liver cancer achieved by the IKK inhibitor curcumin, RNAi and specific peptide SN50. The effects on CSCs were assessed by analysis of side population (SP), sphere formation and tumorigenicity. Molecular changes were determined by RT-qPCR, global gene expression microarray, EMSA, and Western blotting. RESULTS: HCC cell lines exposed to curcumin exhibited differential responses to curcumin and were classified as sensitive and resistant. In sensitive lines, curcumin-mediated induction of cell death was directly related to the extent of NF-κB inhibition. The treatment also led to a selective CSC-depletion as evidenced by a reduced SP size, decreased sphere formation, down-regulation of CSC markers and suppressed tumorigenicity. Similarly, NF-κB inhibition by SN50 and siRNA against p65 suppressed tumor cell growth. In contrast, curcumin-resistant cells displayed a paradoxical increase in proliferation and expression of CSC markers. Mechanistically, an important component of the CSC-depleting activity of curcumin could be attributed to a NF-κB-mediated HDAC inhibition. Co-administration of the class I/II HDAC inhibitor trichostatine sensitized resistant cells to curcumin. Further, integration of a predictive signature of curcumin sensitivity with human HCC database indicated that HCCs with poor prognosis and progenitor features are most likely to benefit from NF-κB inhibition. CONCLUSIONS: These results demonstrate that blocking NF-κB can specifically target CSC populations and suggest a potential for combined inhibition of NF-κB and HDAC signaling for treatment of liver cancer patients with poor prognosis.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Histona Desacetilases/fisiologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Hepáticas/patologia , Camundongos , NF-kappa B/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA