Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(11): e0187094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121646

RESUMO

The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.


Assuntos
Mutação/genética , Sindecana-4/genética , Sindecana-4/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/química , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Humanos , Células MCF-7 , Modelos Biológicos , Domínios PDZ , Ligação Proteica , Proteína Quinase C-alfa/metabolismo , Sindecana-4/química , Quinases Ativadas por p21/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
2.
Plant Physiol ; 165(1): 319-34, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24676858

RESUMO

Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradiol-dependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Tolerância ao Sal , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , DNA Bacteriano/genética , Estradiol/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Dados de Sequência Molecular , Mutagênese Insercional/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fosforilação/efeitos dos fármacos , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Transformação Genética/efeitos dos fármacos
3.
Plant J ; 66(4): 669-79, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21309864

RESUMO

Plant ROP (Rho of plants) proteins form a unique subgroup within the family of Rho-type small G-proteins of eukaryotes. In this paper we demonstrate that the phosphomimetic mutation of a serine residue conserved in all Rho proteins affects the signaling properties of plant ROPs. We found that the S74E mutation in Medicago ROP6 and Arabidopsis ROP4 prevented the binding of these proteins to their plant-specific upstream activator the plant-specific ROP nucleotide exchanger (PRONE)-domain-containing RopGEF (guanine nucleotide exchange factor) protein and abolished the PRONE-mediated nucleotide exchange reaction in vitro. Structural modeling supported the hypothesis that potential phosphorylation of the S74 residue interferes with the binding of the PRONE-domain to the adjacent plant-specific R76 residue which plays an important role in functional ROP-PRONE interaction. Moreover, we show that while the binding of constitutively active MsROP6 to the effector protein RIC (ROP-interactive CRIB-motif-containing protein) was not affected by the S74E mutation, the capability of this mutated protein to bind and activate the RRK1 kinase in vitro was reduced. These observations are in agreement with the morphology of tobacco pollen tubes expressing mutant forms of yellow fluorescent protein (YFP):MsROP6. The S74E mutation in MsROP6 had no influence on pollen tube morphology and attenuated the phenotype of a constitutively active form of MsROP6. The presented Medicago and Arabidopsis data support the notion that the phosphorylation of the serine residue in ROPs corresponding to S74 in Medicago ROP6 could be a general principle for regulating ROP activation and signaling in plants.


Assuntos
Arabidopsis/genética , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Serina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Medicago truncatula/anatomia & histologia , Medicago truncatula/metabolismo , Modelos Moleculares , Mutação , Fosforilação , Proteínas de Plantas/genética , Pólen/anatomia & histologia , Pólen/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Serina/genética , Transdução de Sinais , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA