Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Dev ; 27(21): 1518-1525, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30044182

RESUMO

Equine mesenchymal stem/stromal cells (MSCs) are multipotent cells that are widely used for treatment of musculoskeletal injuries, and there is significant interest in expanding their application to nonorthopedic conditions. MSCs possess antibacterial and immunomodulatory properties that may be relevant for combating infection; however, comparative studies using MSCs from different origins have not been carried out in the horse, and this was the focus of this study. Our results showed that MSC-conditioned media attenuated the growth of Escherichia coli, and that this effect was, on average, more pronounced for endometrium (EM)-derived and adipose tissue (AT)-derived MSCs than for bone marrow (BM)-derived MSCs. In addition, the antimicrobial lipocalin-2 was expressed at mean higher levels in EM-MSCs than in AT-MSCs and BM-MSCs, and the bacterial component lipopolysaccharide (LPS) stimulated its production by all three MSC types. We also showed that MSCs express interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1, chemokine ligand-5, and Toll-like receptor 4, and that, in general, these cytokines were induced in all cell types by LPS. Low expression levels of the macrophage marker colony-stimulating factor 1 receptor were detected in BM-MSCs and EM-MSCs but not in AT-MSCs. Altogether, these findings suggest that equine MSCs from EM, AT, and BM have both direct and indirect antimicrobial properties that may vary between MSCs from different origins and could be exploited toward improvement of regenerative therapies for horses.


Assuntos
Endométrio/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/microbiologia , Células-Tronco Multipotentes/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Tecido Adiposo/microbiologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Endométrio/crescimento & desenvolvimento , Endométrio/microbiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cavalos/imunologia , Cavalos/microbiologia , Interleucina-6/genética , Interleucina-8/genética , Lipocalina-2/genética , Lipopolissacarídeos , Macrófagos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/microbiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor 4 Toll-Like/genética
2.
Stem Cells Dev ; 26(13): 964-972, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28376684

RESUMO

Mesenchymal stem/stromal cells (MSCs) have been used in human and equine regenerative medicine, and interest in exploiting their potential has increased dramatically over the years. Despite significant effort to characterize equine MSCs, the actual origin of these cells and how much of their native phenotype is maintained in culture have not been determined. In this study, we investigated the relationship between MSCs, derived from adipose tissue (AT) and bone marrow (BM), and pericytes in the horse. Both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD90, and CD73) markers were detected in equine AT and colocalized around blood vessels. Importantly, as assessed by flow cytometry, both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD44, CD90, and CD105) markers were present in a majority (≥90%) of cells in cultures of AT-MSCs and BM-MSCs; however, levels of pericyte markers were variable within each of those populations. Moreover, the expression of pericyte markers was maintained for at least eight passages in both AT-MSCs and BM-MSCs. Hematopoietic (CD45) and endothelial (CD144) markers were also detected at low levels in MSCs by quantitative polymerase chain reaction (qPCR). Finally, in coculture experiments, AT-MSCs closely associated with networks produced by endothelial cells, resembling the natural perivascular location of pericytes in vivo. Our results indicate that equine MSCs originate from perivascular cells and moreover maintain a pericyte-like phenotype in culture. Therefore, we suggest that, in addition to classical MSC markers, pericyte markers such as CD146 could be used when assessing and characterizing equine MSCs.


Assuntos
Tecido Adiposo/parasitologia , Células-Tronco Mesenquimais/metabolismo , Pericitos/metabolismo , Medicina Regenerativa , Tecido Adiposo/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Vasos Sanguíneos/metabolismo , Células da Medula Óssea/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Caderinas/genética , Caderinas/metabolismo , Técnicas de Cocultura , Citometria de Fluxo , Cavalos , Humanos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Fenótipo
3.
Stem Cells Dev ; 23(13): 1524-34, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24548115

RESUMO

Pluripotent stem cells (PSCs) offer unprecedented biomedical potential not only in relation to humans but also companion animals, particularly the horse. Despite this, attempts to generate bona fide equine embryonic stem cells have been unsuccessful. A very limited number of induced PSC lines have so far been generated from equine fibroblasts but their potential for directed differentiation into clinically relevant tissues has not been explored. In this study, we used retroviral vectors to generate induced pluripotent stem cells (iPSCs) with comparatively high efficiency from equine keratinocytes. Expression of endogenous PSC markers (OCT4, SOX2, LIN28, NANOG, DNMT3B, and REX1) was effectively restored in these cells, which could also form in vivo several tissue derivatives of the three germ layers, including functional neurons, keratinized epithelium, cartilage, bone, muscle, and respiratory and gastric epithelia. Comparative analysis of different reprogrammed cell lines revealed an association between the ability of iPSCs to form well-differentiated teratomas and the distinct endogenous expression of OCT4 and REX1 and reduced expression of viral transgenes. Importantly, unlike in previous studies, equine iPSCs were successfully expanded using simplified feeder-free culture conditions, constituting significant progress toward future biomedical applications. Further, under appropriate conditions equine iPSCs generated cells with features of cholinergic motor neurons including the ability to generate action potentials, providing the first report of functional cells derived from equine iPSCs. The ability to derive electrically active neurons in vitro from a large animal reveals highly conserved pathways of differentiation across species and opens the way for new and exciting applications in veterinary regenerative medicine.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Queratinócitos/fisiologia , Neurônios/fisiologia , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Células Alimentadoras , Expressão Gênica , Cavalos , Camundongos Endogâmicos NOD , Camundongos SCID , Esferoides Celulares/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Stem Cells Dev ; 22(4): 611-21, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22897112

RESUMO

Pluripotent stem cells offer unprecedented potential not only for human medicine but also for veterinary medicine, particularly in relation to the horse. Induced pluripotent stem cells (iPSCs) are particularly promising, as they are functionally similar to embryonic stem cells and can be generated in vitro in a patient-specific manner. In this study, we report the generation of equine iPSCs from skin fibroblasts obtained from a foal and reprogrammed using viral vectors coding for murine Oct4, Sox2, c-Myc, and Klf4 sequences. The reprogrammed cell lines were morphologically similar to iPSCs reported from other species and could be stably maintained over more than 30 passages. Immunostaining and polymerase chain reaction analyses revealed that these cell lines expressed an array of endogenous markers associated with pluripotency, including OCT4, SOX2, NANOG, REX1, LIN28, SSEA1, SSEA4, and TRA1-60. Furthermore, under the appropriate conditions, the equine iPSCs readily formed embryoid bodies and differentiated in vitro into cells expressing markers of ectoderm, mesoderm, and endoderm, and when injected into immunodeficient mice, gave raise to tumors containing differentiated derivatives of the 3 germ layers. Finally, we also reprogrammed fibroblasts from a 2-year-old horse. The reprogrammed cells were similar to iPSCs derived from neonatal fibroblasts in terms of morphology, expression of pluripotency markers, and differentiation ability. The generation of these novel cell lines constitutes an important step toward the understanding of pluripotency in the horse, and paves the way for iPSC technology to potentially become a powerful research and clinical tool in veterinary biomedicine.


Assuntos
Antígenos de Diferenciação , Desdiferenciação Celular , Corpos Embrioides , Fibroblastos , Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Células Cultivadas , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Cavalos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
5.
Endocrinology ; 146(9): 3907-16, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15919743

RESUMO

Signaling pathways mediating the divergent effects of FSH and LH on aromatase in immature rat granulosa cells were studied by infecting cells with increasing amounts of adenoviral vectors for the human LH receptor (hLHR) or FSH receptor (hFSHR). Increasing amounts of Ad-hLHR, used at a multiplicity of infection (MOI) of 20 or 200 viable viral particles/cell, increased human chorionic gonadotropin (hCG) binding and hCG-induced cAMP and Akt phosphorylation, but inositol phosphates only increased in response to hCG in cells infected with 200 MOI Ad-hLHR. In contrast, hCG increased aromatase expression in cells infected with 20, but not in cells infected with 200, MOI Ad-hLHR. Cells infected with 20 or 200 MOI Ad-hFSHR showed increased hFSH binding and hFSH-induced Akt phosphorylation, but the hFSH-induced cAMP response was unchanged relative to control cells. However, hFSH was able to stimulate the inositol phosphate cascade in the Ad-hFSHR-infected cells, and the hFSH induction of aromatase was abolished. We also found that activation of C kinase or expression of a constitutively active form of Galphaq inhibited the induction of aromatase by hFSH or 8Br-cAMP. We conclude that the differential effects of FSH and LH on aromatase in immature granulosa cells are highly dependent on gonadotropin receptor density and on the signaling pathways activated. We propose that aromatase is induced by common signals generated by activation of the FSHR and LHR (possibly cAMP and Akt) and that the activation of the inositol phosphate cascade in cells expressing a high density of LHR or FSHR antagonizes this induction.


Assuntos
Aromatase/genética , Células da Granulosa/enzimologia , Receptores do FSH/metabolismo , Receptores do LH/metabolismo , Adenoviridae/genética , Fatores Etários , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos , Células da Granulosa/citologia , Células da Granulosa/fisiologia , Fosfatos de Inositol/metabolismo , Radioisótopos do Iodo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA