Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virol J ; 16(1): 149, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783761

RESUMO

BACKGROUND: Vaccination and the use of neuraminidase inhibitors (NAIs) are currently the front lines of defense against seasonal influenza. The activity of influenza vaccines and antivirals drugs such as the NAIs can be affected by mutations in the influenza hemagglutinin (HA) protein. Numerous HA substitutions have been identified in nonclinical NAI resistance-selection experiments as well as in clinical specimens from NAI treatment or surveillance studies. These mutations are listed in the prescribing information (package inserts) for FDA-approved NAIs, including oseltamivir, zanamivir, and peramivir. METHODS: NAI treatment-emergent H1 HA mutations were mapped onto the H1N1 HA1 trimeric crystal structure and most of them localized to the HA antigenic sites predicted to be important for anti-influenza immunity. Recombinant A/California/04/09 (H1N1)-like viruses carrying HA V152I, G155E, S162 N, S183P, and D222G mutations were generated. We then evaluated the impact of these mutations on the immune reactivity and replication potential of the recombinant viruses in a human respiratory epithelial cell line, Calu- 3. RESULTS: We found that the G155E and D222G mutations significantly increased viral titers ~ 13-fold compared to the wild-type virus. The hemagglutination and microneutralization activity of goat and ferret antisera, monoclonal antibodies, and human serum samples raised against pandemic A(H1N1)pdm09 viruses was ~ 100-fold lower against mutants carrying G155E or D222G compared to the wild-type virus. CONCLUSIONS: Although the mechanism by which HA mutations emerge during NAI treatment is uncertain, some NAI treatment-emergent HA mutations correlate with decreased immunity to influenza virus.


Assuntos
Farmacorresistência Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Mutação de Sentido Incorreto , Ácidos Carbocíclicos , Antivirais/farmacologia , Linhagem Celular , Cristalografia por Raios X , Ciclopentanos/farmacologia , Células Epiteliais/virologia , Epitopos/genética , Guanidinas/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Proteínas Mutantes/química , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Conformação Proteica , Seleção Genética , Proteínas Virais/antagonistas & inibidores , Replicação Viral , Zanamivir/farmacologia
2.
Antiviral Res ; 169: 104549, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279814

RESUMO

Letermovir is a human cytomegalovirus (HCMV) terminase inhibitor recently approved in the United States for prophylaxis of HCMV infection or disease in adult HCMV-seropositive recipients [R+] of an allogeneic hematopoietic stem cell transplant. In the registrational trial, the rate of clinically significant HCMV infection, defined as the development of HCMV DNAemia leading to preemptive antiviral therapy or the diagnosis of HCMV end-organ disease, through 24 weeks post-transplant, was significantly lower among subjects who received letermovir prophylaxis through 14 weeks post-transplant compared to those who received placebo. We performed independent analyses of the HCMV nucleotide sequencing data generated by next-generation sequencing from this phase 3 registrational trial of letermovir to identify viral genetic characteristics associated with virologic failure during and following letermovir prophylaxis. The pUL56 substitutions V236M, E237G, and C325W, identified at previously known resistance-associated positions, were detected in the virus of subjects who were treated with letermovir and failed letermovir prophylaxis. Several additional substitutions were detected in pUL56 and pUL89, and further characterization is needed to determine if any of these substitutions are clinically relevant. The analyses reported herein were conducted to confirm sponsor-reported drug-resistance pathways, to assess the frequency of resistance, and to better understand the risk of prophylaxis failures and treatment-emergent drug resistance.


Assuntos
Citomegalovirus/genética , Farmacorresistência Viral/genética , Genômica , Proteínas Virais/genética , Proteínas Estruturais Virais/genética , Acetatos/farmacologia , Substituição de Aminoácidos , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Endodesoxirribonucleases/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quinazolinas/farmacologia , Transplante de Células-Tronco
3.
Nat Med ; 21(12): 1508-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26552008

RESUMO

The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations. Using the SARS-CoV reverse genetics system, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.


Assuntos
Quirópteros/virologia , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Epidemias , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Pulmão/virologia , Camundongos Endogâmicos BALB C , Testes de Neutralização , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Virulência , Replicação Viral
4.
Virology ; 462-463: 351-62, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25036340

RESUMO

The simian hemorrhagic fever virus (SHFV) genome differs from those of other members of the family Arterivirus in encoding two adjacent sets of four minor structural protein open reading frames (ORFs). A stable, full-length, infectious SHFV-LVR cDNA clone was constructed. Virus produced from this clone had replication characteristics similar to those of the parental virus. A subgenomic mRNA was identified for the SHFV ORF previously identified as 2b. As an initial means of analyzing the functional relevance of each of the SHFV minor structural proteins, a set of mutant infectious clones was generated, each with the start codon of one minor structural protein ORF mutated. Different phenotypes were observed for each ortholog of the pairs of minor glycoproteins and all of the eight minor structural proteins were required for the production of infectious extracellular virus indicating that the duplicated sets of SHFV minor structural proteins are not functionally redundant.


Assuntos
Arterivirus/fisiologia , Proteínas Estruturais Virais/metabolismo , Replicação Viral , Animais , Arterivirus/genética , Linhagem Celular , Chlorocebus aethiops , Códon de Iniciação/genética , Mutação , Proteínas Estruturais Virais/genética
5.
J Virol ; 88(16): 9129-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899184

RESUMO

UNLABELLED: The N-terminal region of simian hemorrhagic fever virus (SHFV) nonstructural polyprotein 1a is predicted to encode three papain-like proteases (PLP1α, PLP1ß, and PLP1γ). Catalytic residues and cleavage sites for each of the SHFV PLP1s were predicted by alignment of the SHFV PLP1 region sequences with each other as well as with those of other arteriviruses, and the predicted catalytic residues were shown to be proximal by homology modeling of the SHFV nsp1s on porcine respiratory and reproductive syndrome virus (PRRSV) nsp1 crystal structures. The functionality of the predicted catalytic Cys residues and cleavage sites was tested by analysis of the autoproteolytic products generated in in vitro transcription/translation reactions done with wild-type or mutant SHFV nsp1 constructs. Cleavage sites were also analyzed by mass spectroscopy analysis of selected immunoprecipitated cleavage products. The data showed that each of the three SHFV PLP1s is an active protease. Cys63 was identified as the catalytic Cys of SHFV PLP1α and is adjacent to an Ala instead of the canonical Tyr observed in other arterivirus PLP1s. SHFV PLP1γ is able to cleave at both downstream and upstream nsp1 junction sites. Although intermediate precursor polyproteins as well as alternative products generated by each of the SHFV PLP1s cleaving at sites within the N-terminal region of nsp1ß were produced in the in vitro reactions, Western blotting of SHFV-infected, MA104 cell lysates with SHFV nsp1 protein-specific antibodies detected only the three mature nsp1 proteins. IMPORTANCE: SHFV is unique among arteriviruses in having three N-terminal papain-like protease 1 (PLP1) domains. Other arteriviruses encode one or two active PLP1s. This is the first functional study of the SHFV PLP1s. Analysis of the products of in vitro autoprocessing of an N-terminal SHFV nonstructural 1a polypeptide fragment showed that each of the three SHFV PLP1s is active, and the predicted catalytic Cys residues and cleavage sites for each PLP1 were confirmed by testing mutant constructs. Several unique features of the SHFV PLP1s were discovered. The SHFV PLP1α catalytic Cys63 is unique among arterivirus PLP1s in being adjacent to an Ala instead of a Trp. Other arterivirus PLP1s cleave only in cis at a single downstream site, but SHFV PLP1γ can cleave at both the downstream nsp1γ-nsp2 and upstream nsp1ß-nsp1γ junctions. The three mature nsp1 proteins were produced both in the in vitro reactions and in infected cells.


Assuntos
Arterivirus/genética , Papaína/genética , Papaína/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Arterivirus/metabolismo , Infecções por Arterivirus/virologia , Catálise , Linhagem Celular , Dados de Sequência Molecular , Poliproteínas/genética , Poliproteínas/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Alinhamento de Sequência , Suínos/virologia
6.
Proc Natl Acad Sci U S A ; 110(40): 16157-62, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043791

RESUMO

Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Coronavirus/genética , DNA Complementar/genética , Síndrome Respiratória Aguda Grave/virologia , Northern Blotting , Western Blotting , Células Cultivadas , Primers do DNA/genética , Dipeptidil Peptidase 4/metabolismo , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Proteínas Luminescentes , Oriente Médio , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Ligação Viral , Replicação Viral/fisiologia , Proteína Vermelha Fluorescente
7.
PLoS Negl Trop Dis ; 6(2): e1486, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389731

RESUMO

Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Variação Genética , Genética Reversa/métodos , Proteínas do Envelope Viral/imunologia , Adulto , Dengue/imunologia , Dengue/virologia , Genótipo , Humanos , Testes de Neutralização , Proteínas do Envelope Viral/genética
8.
Proc Natl Acad Sci U S A ; 105(50): 19944-9, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19036930

RESUMO

Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.


Assuntos
Quirópteros/virologia , Glicoproteínas de Membrana/genética , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Recombinação Genética , Mucosa Respiratória/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Glicoproteína da Espícula de Coronavírus , Células Vero , Replicação Viral , Zoonoses/transmissão , Zoonoses/virologia
9.
J Virol ; 81(13): 7086-98, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17428870

RESUMO

Coronaviruses are the largest RNA viruses, and their genomes encode replication machinery capable of efficient replication of both positive- and negative-strand viral RNAs as well as enzymes capable of processing large viral polyproteins into putative replication intermediates and mature proteins. A model described recently by Sawicki et al. (S. G. Sawicki, D. L. Sawicki, D. Younker, Y. Meyer, V. Thiel, H. Stokes, and S. G. Siddell, PLoS Pathog. 1:e39, 2005), based upon complementation studies of known temperature-sensitive (TS) mutants of murine hepatitis virus (MHV) strain A59, proposes that an intermediate comprised of nsp4 to nsp10/11 ( approximately 150 kDa) is involved in negative-strand synthesis. Furthermore, the mature forms of nsp4 to nsp10 are thought to serve as cofactors with other replicase proteins to assemble a larger replication complex specifically formed to transcribe positive-strand RNAs. In this study, we introduced a single-amino-acid change (nsp10:Q65E) associated with the TS-LA6 phenotype into nsp10 of the infectious clone of MHV. Growth kinetic studies demonstrated that this mutation was sufficient to generate the TS phenotype at permissive and nonpermissive temperatures. Our results demonstrate that the TS mutant variant of nsp10 inhibits the main protease, 3CLpro, blocking its function completely at the nonpermissive temperature. These results implicate nsp10 as being a critical factor in the activation of 3CLpro function. We discuss how these findings challenge the current hypothesis that nsp4 to nsp10/11 functions as a single cistron in negative-strand RNA synthesis and analyze recent complementation data in light of these new findings.


Assuntos
Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/metabolismo , Mutação de Sentido Incorreto , Poliproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Genes/genética , Genoma Viral/genética , Temperatura Alta , Poliproteínas/genética , Processamento de Proteína Pós-Traducional/genética , RNA Viral/biossíntese , RNA Viral/genética , Proteínas Virais/genética , Replicação Viral
10.
J Virol ; 81(12): 6356-68, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17392363

RESUMO

Coronavirus replication requires proteolytic processing of the large polyprotein encoded by ORF1a/ab into putative functional intermediates and eventually approximately 15 mature proteins. The C-terminal ORF1a protein nsp10 colocalizes with viral replication complexes, but its role in transcription/replication is not well defined. To investigate the role of nsp10 in coronavirus transcription/replication, alanine replacements were engineered into a murine hepatitis virus (MHV) infectious clone in place of conserved residues in predicted functional domains or charged amino acid pairs/triplets, and rescued viruses were analyzed for mutant phenotypes. Of the 16 engineered clones, 5 viable viruses were rescued, 3 mutant viruses generated no cytopathic effect but were competent to synthesize viral subgenomic RNAs, and 8 were not viable. All viable mutants showed reductions in growth kinetics and overall viral RNA synthesis, implicating nsp10 as being a cofactor in positive- or negative-strand synthesis. Viable mutant nsp10-E2 was compromised in its ability to process the nascent polyprotein, as processing intermediates were detected in cells infected with this virus that were not detectable in wild-type infections. Mapping the mutations onto the crystal structure of severe acute respiratory syndrome virus nsp10 identified a central core resistant to mutation. Mutations targeting residues in or near either zinc-binding finger generated nonviable phenotypes, demonstrating that both domains are essential to nsp10 function and MHV replication. All mutations resulting in viable phenotypes mapped to loops outside the central core and were characterized by a global decrease in RNA synthesis. These results demonstrate that nsp10 is a critical regulator of coronavirus RNA synthesis and may play an important role in polyprotein processing.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite Murina/enzimologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/fisiologia , Alanina/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Cricetinae , Humanos , Imunoprecipitação , Cinética , Dados de Sequência Molecular , Mutação , Poliproteínas/química , RNA Polimerase Dependente de RNA/biossíntese , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA