Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 75(1): 40-45, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39070534

RESUMO

Trans-resveratrol, a widely used supplement for humans, aims to enhance the body's antioxidant defense. Studies suggest that it exerts anti-inflammatory and antioxidant effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2). In order to evaluate this hypothesis, LDLr(-/-) mice were fed a Western diet to induce liver inflammation and oxidative stress. One group was fed a diet containing 0.60 mg/day of trans-resveratrol (RESV), while another group received no dietary supplementation (CONT). Oxidative stress biomarkers and inflammatory cytokines were assessed in liver homogenates. It was observed that trans-resveratrol decreased hepatic oxidative stress by increasing the GSH/GSSG ratio and reducing malondialdehyde (MDA) concentration. However, the RESV group exhibited a reduction in Nrf2 relative expression compared to CONT. Additionally, trans-resveratrol supplementation reduced nuclear factor-κB (NF-κB) expression but led to an increase in IL-6, with no significant changes observed in tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) concentrations. Overall, these findings indicate that the in vivo antioxidant impact induced by trans-resveratrol supplementation in hepatic tissue did not correlate with increase of inflammatory cytokines and Nrf2 relative expression. Further exploration of alternative mechanisms, such as direct radical scavenger activity, is warranted to elucidate the antioxidant effect.

2.
Endocrinology ; 164(11)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37793082

RESUMO

It is well-established that the hypothalamic-pituitary-gonadal (HPG) axis is suppressed due to negative energy balance. However, less information is available on whether kisspeptin neuronal activity contributes to fasting-induced responses. In the present study, female and male mice were fasted for 24 hours or provided food ad libitum (fed group) to determine whether acute fasting is sufficient to modulate kisspeptin neuronal activity. In female mice, fasting attenuated luteinizing hormone (LH) and prolactin (PRL) serum levels and increased follicle-stimulating hormone levels compared with the fed group. In contrast, fasting did not affect gonadotropin or PRL secretion in male mice. By measuring genes related to LH pulse generation in micropunches obtained from the arcuate nucleus of the hypothalamus (ARH), we observed that fasting reduced Kiss1 mRNA levels in female and male mice. In contrast, Pdyn expression was upregulated only in fasted female mice, whereas no changes in the Tac2 mRNA levels were observed in both sexes. Interestingly, the frequency and amplitude of the GABAergic postsynaptic currents recorded from ARH kisspeptin neurons (ARHKisspeptin) were reduced in 24-hour fasted female mice but not in males. Additionally, neuropeptide Y induced a hyperpolarization in the resting membrane potential of ARHKisspeptin neurons of fed female mice but not in males. Thus, the response of ARHKisspeptin neurons to fasting is sexually dependent with a female bias, associated with changes in gonadotropins and PRL secretion. Our findings suggest that GABAergic transmission to ARHKisspeptin neurons modulates the activity of the HPG axis during situations of negative energy balance.


Assuntos
Kisspeptinas , Hormônio Luteinizante , Camundongos , Feminino , Masculino , Animais , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Transmissão Sináptica , Neurônios/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Jejum/metabolismo , RNA Mensageiro/metabolismo
3.
J Chem Neuroanat ; 129: 102241, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738851

RESUMO

The amylin and the melanin-concentrating hormone [MCH] are two peptides related to energetic homeostasis. During lactation, it is possible to locate neurons expressing these peptides in the preoptic area of rat dams. In addition, it was demonstrated that the number of MCH neurons in this region is modulated by litter size. Taken together, the aims of this work were (1) to verify the time course of amylin immunoreactivity during lactation; (2) to verify whether litter size modulates the number of amylin-ir neurons (3) to verify whether there is colocalization between the amylin-ir and MCH-ir neurons. Our results show that (1) there is an increase in the number of amylin-ir neurons during lactation, which reaches a peak at postpartum day 19 and drastically reduces after weaning; (2) there is no correlation between litter size and the number of amylin-ir neurons; and (3) there is minimal overlap between amylin-ir and MCH-ir neurons.


Assuntos
Hormônios Hipotalâmicos , Área Pré-Óptica , Feminino , Ratos , Animais , Área Pré-Óptica/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Hormônios Hipofisários , Hormônios Hipotalâmicos/metabolismo , Melaninas , Lactação , Neurônios/metabolismo
4.
Physiol Rep ; 10(17): e15460, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065891

RESUMO

The pattern of gonadotropin secretion along the estrous cycle was elegantly described in rats. Less information exists about the pattern of gonadotropin secretion in gonad-intact mice, particularly regarding the follicle-stimulating hormone (FSH). Using serial blood collections from the tail-tip of gonad-intact C57BL/6 mice on the first day of cornification (transition from diestrus to estrus; hereafter called proestrus), we observed that the luteinizing hormone (LH) and FSH surge cannot be consistently detected since only one out of eight females (12%) showed increased LH levels. In contrast, a high percentage of mice (15 out of 21 animals; 71%) exhibited LH and FSH surges on the proestrus when a single serum sample was collected. Mice that exhibited LH and FSH surges on the proestrus showed c-Fos expression in gonadotropin-releasing hormone- (GnRH; 83.4% of co-localization) and kisspeptin-expressing neurons (42.3% of co-localization) of the anteroventral periventricular nucleus (AVPV). Noteworthy, mice perfused on proestrus, but that failed to exhibit LH surge, showed a smaller, but significant expression of c-Fos in GnRH (32.7%) and AVPVKisspeptin (14.0%) neurons. Finally, 96 serial blood samples were collected hourly in eight regular cycling C57BL/6 females to describe the pattern of LH and FSH secretion along the estrous cycle. Small elevations in LH and FSH levels were detected at the time expected for the LH surge. In summary, the present study improves our understanding of the pattern of gonadotropin secretion and the activation of central components of the hypothalamic-pituitary-gonadal axis along the estrous cycle of C57BL/6 female mice.


Assuntos
Kisspeptinas , Hormônio Luteinizante , Animais , Ciclo Estral , Feminino , Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos , Ratos
5.
Cytokine ; 158: 155999, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985175

RESUMO

Many cytokines have been proposed to regulate reproduction due to their actions on hypothalamic kisspeptin cells, the main modulators of gonadotropin-releasing hormone (GnRH) neurons. Hormones such as leptin, prolactin and growth hormone are good examples of cytokines that lead to Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway activation, consequently exerting effects in kisspeptin neurons. Different studies have investigated how specific components of the JAK/STAT signaling pathway affect the functions of kisspeptin cells, but the role of the suppressor of cytokine signaling 3 (SOCS3) in mediating cytokine actions in kisspeptin cells remains unknown. Cre-Loxp technology was used in the present study to ablate Socs3 expression in kisspeptin cells (Kiss1/Socs3-KO). Then, male and female control and Kiss1/Socs3-KO mice were evaluated for sexual maturation, energy homeostasis features, and fertility. It was found that hypothalamic Kiss1 mRNA expression is significantly downregulated in Kiss1/Socs3-KO mice. Despite reduced hypothalamic Kiss1 mRNA content, these mice did not present any sexual maturation or fertility impairments. Additionally, body weight gain, leptin sensitivity and glucose homeostasis were similar to control mice. Interestingly, Kiss1/Socs3-KO mice were partially protected against lipopolysaccharide (LPS)-induced body weight loss. Our results suggest that Socs3 ablation in kisspeptin cells partially prevents the sickness behavior induced by LPS, suggesting that kisspeptin cells can modulate energy metabolism in mice in certain situations.


Assuntos
Kisspeptinas , Lipopolissacarídeos , Animais , Peso Corporal/fisiologia , Citocinas/metabolismo , Feminino , Kisspeptinas/genética , Kisspeptinas/metabolismo , Leptina/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , RNA Mensageiro , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Redução de Peso
6.
Diabetes ; 71(7): 1546-1561, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35377454

RESUMO

Obesity is a major concern for global health care systems. Systemic low-grade inflammation in obesity is a major risk factor for insulin resistance. Leptin is an adipokine secreted by the adipose tissue that functions by controlling food intake, leading to satiety. Leptin levels are increased in obesity. Here, we show that leptin enhances the effects of LPS in macrophages, intensifying the production of cytokines, glycolytic rates, and morphological and functional changes in the mitochondria through an mTORC2-dependent, mTORC1-independent mechanism. Leptin also boosts the effects of IL-4 in macrophages, leading to increased oxygen consumption, expression of macrophage markers associated with a tissue repair phenotype, and wound healing. In vivo, hyperleptinemia caused by diet-induced obesity increases the inflammatory response by macrophages. Deletion of leptin receptor and subsequently of leptin signaling in myeloid cells (ObR-/-) is sufficient to improve insulin resistance in obese mice and decrease systemic inflammation. Our results indicate that leptin acts as a systemic nutritional checkpoint to regulate macrophage fitness and contributes to obesity-induced inflammation and insulin resistance. Thus, specific interventions aimed at downstream modulators of leptin signaling may represent new therapeutic targets to treat obesity-induced systemic inflammation.


Assuntos
Resistência à Insulina , Leptina , Tecido Adiposo/metabolismo , Animais , Inflamação/metabolismo , Leptina/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 1018090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704037

RESUMO

Hyperprolactinemia can be caused by several conditions and its effects on the hypothalamic-pituitary-gonadal axis are understood in more detail. Nevertheless, in recent decades, other metabolic effects have been studied and data pointed to a potential increased cardiovascular disease (CVD) risk. A recent study showed a decrease in total and LDL- cholesterol only in men with prolactinoma treated with dopamine agonists (DA) supporting the previous results of a population study with increased CVD risk in men harboring prolactinoma. However, other population studies did not find a correlation between prolactin (PRL) levels and CVD risk or mortality. There is also data pointing to an increase in high-density lipoprotein levels, and decreases in triglycerides, carotid-intima-media thickness, C-reactive protein, and homocysteine levels in patients with prolactinoma on DA treatment. PRL was also implicated in endothelial dysfunction in pre and postmenopausal women. Withdrawal of DA resulted in negative changes in vascular parameters and an increase in plasma fibrinogen. It has been shown that PRL levels were positively correlated with blood pressure and inversely correlated with dilatation of the brachial artery and insulin sensitivity, increased homocysteine levels, and elevated D-dimer levels. Regarding possible mechanisms for the association between hyperprolactinemia and CVD risk, they include a possible direct effect of PRL, hypogonadism, and even effects of DA treatment, independently of changes in PRL levels. In conclusion, hyperprolactinemia seems to be associated with impaired endothelial function and DA treatment could improve CVD risk. More studies evaluating CVD risk in hyperprolactinemic patients are important to define a potential indication of treatment beyond hypogonadism.


Assuntos
Doenças Cardiovasculares , Hiperprolactinemia , Hipogonadismo , Neoplasias Hipofisárias , Prolactinoma , Masculino , Humanos , Feminino , Prolactina/metabolismo , Hiperprolactinemia/complicações , Prolactinoma/complicações , Prolactinoma/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Espessura Intima-Media Carotídea , Agonistas de Dopamina , LDL-Colesterol , Neoplasias Hipofisárias/metabolismo , Homocisteína
8.
Mol Cell Endocrinol ; 542: 111532, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34915098

RESUMO

Hypothalamic kisspeptin neurons are the primary modulators of gonadotropin-releasing hormone (GnRH) neurons. It has been shown that circadian rhythms driven by the suprachiasmatic nucleus (SCN) contribute to GnRH secretion. Kisspeptin neurons are potential targets of SCN neurons due to reciprocal connections with the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) and the arcuate nucleus of the hypothalamus (ARH). Vasoactive intestinal peptide (VIP), a notable SCN neurotransmitter, modulates GnRH secretion depending on serum estradiol levels, aging or time of the day. Considering that kisspeptin neurons may act as interneurons and mediate VIP's effects on the reproductive axis, we investigated the effects of VIP on hypothalamic kisspeptin neurons in female mice during estrogen negative feedback. Our findings indicate that VIP induces a TTX-independent depolarization of approximately 30% of AVPV/PeN kisspeptin neurons in gonad-intact (diestrus) and ovariectomized (OVX) mice. In the ARH, the percentage of kisspeptin neurons that were depolarized by VIP was even higher (approximately 90%). An intracerebroventricular infusion of VIP leds to an increased percentage of kisspeptin neurons expressing the phosphoSer133 cAMP-response-element-binding protein (pCREB) in the AVPV/PeN. On the other hand, pCREB expression in ARH kisspeptin neurons was similar between saline- and VIP-injected mice. Thus, VIP can recruit different signaling pathways to modulate AVPV/PeN or ARH kisspeptin neurons, resulting in distinct cellular responses. The expression of VIP receptors (VPACR) was upregulated in the AVPV/PeN, but not in the ARH, of OVX mice compared to mice on diestrus and estradiol-primed OVX mice. Our findings indicate that VIP directly influences distinct cellular aspects of the AVPV/PeN and ARH kisspeptin neurons during estrogen negative feedback, possibly to influence pulsatile LH secretion.


Assuntos
Kisspeptinas , Peptídeo Intestinal Vasoativo , Animais , Estradiol/metabolismo , Estradiol/farmacologia , Estrogênios/metabolismo , Estrogênios/farmacologia , Retroalimentação , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Camundongos , Neurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia
9.
Life Sci ; 285: 119970, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34562435

RESUMO

Growth hormone (GH) deficiency is a common cause of late sexual maturation and fertility issues. To determine whether GH-induced effects on reproduction are associated with alterations in hypothalamic kisspeptin system, we studied the male reproduction in two distinct GH deficiency mouse models. In the first model, mice present GH deficiency secondary to arcuate nucleus of the hypothalamus (ARH) lesions induced by posnatal monosodium glutamate (MSG) injections. MSG-induced ARH lesions led to significant reductions in hypothalamic Ghrh mRNA expression and consequently growth. Hypothalamic Kiss1 mRNA expression and Kiss1-expressing cells in the ARH were disrupted in the MSG-treated mice. In contrast, kisspeptin immunoreactivity remained preserved in the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) of MSG-treated mice. Importantly, ARH lesions caused late sexual maturation and infertility in male mice. In our second mouse model, we studied animals profound GH deficiency due to a loss-of-function mutation in the Ghrhr gene (Ghrhrlit/lit mice). Interestingly, although Ghrhrlit/lit mice exhibited late puberty onset, hypothalamic Kiss1 mRNA expression and hypothalamic kisspeptin fiber density were normal in Ghrhrlit/lit mice. Despite presenting dwarfism, the majority of Ghrhrlit/lit male mice were fertile. These findings suggest that spontaneous GH deficiency during development does not compromise the kisspeptin system. Furthermore, ARH Kiss1-expressing neurons are required for fertility, while AVPV/PeN kisspeptin expression is sufficient to allow maturation of the hypothalamic-pituitary-gonadal axis in male mice.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio do Crescimento/deficiência , Sistema Hipotálamo-Hipofisário/metabolismo , Kisspeptinas/metabolismo , Reprodução , Maturidade Sexual , Animais , Nanismo/genética , Nanismo/metabolismo , Fertilidade , Kisspeptinas/genética , Masculino , Camundongos , Neurônios/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo
10.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33972988

RESUMO

Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR). Thus, ghrelin-induced GH secretion may contribute to the orexigenic effect of ghrelin. Here, we investigated the response to ghrelin in male mice carrying GHR ablation specifically in neurons (brain GHR knockout [KO] mice) or exclusively in ARHAgRP/NPY neurons (AgRP GHR KO mice). Although brain GHR KO mice showed normal ghrelin-induced increase in plasma GH levels, these mutants lacked the expected orexigenic response to ghrelin. Additionally, brain GHR KO mice displayed reduced hypothalamic levels of Npy and Ghsr mRNA and did not elicit ghrelin-induced c-Fos expression in the ARH. Furthermore, brain GHR KO mice exhibited a prominent reduction in AgRP fiber density in the ARH and paraventricular nucleus of the hypothalamus (PVH). In contrast, AgRP GHR KO mice showed no changes in the hypothalamic Npy and Ghsr mRNAs and conserved ghrelin-induced food intake and c-Fos expression in the ARH. AgRP GHR KO mice displayed a reduced AgRP fiber density (~16%) in the PVH, but this reduction was less than that observed in brain GHR KO mice (~61%). Our findings indicate that GHR signaling in the brain is required for the orexigenic effect of ghrelin, independently of GH action on ARHAgRP/NPY neurons.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Grelina/farmacologia , Hormônio do Crescimento/sangue , Receptores da Somatotropina/genética , Receptores da Somatotropina/fisiologia , Proteína Relacionada com Agouti/análise , Animais , Núcleo Arqueado do Hipotálamo/química , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeo Y/genética , Núcleo Hipotalâmico Paraventricular/química , Proteínas Proto-Oncogênicas c-fos/análise , RNA Mensageiro/análise , Receptores de Grelina/genética , Receptores da Somatotropina/deficiência , Transdução de Sinais/fisiologia
11.
Transl Psychiatry ; 11(1): 251, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911072

RESUMO

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Interleucina-6 , Camundongos , Placa Amiloide
12.
Nutr Cancer ; 73(4): 642-651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32406264

RESUMO

There is a strong correlation between obesity and cancer. Here, we investigated the influence of IL-6 and gut microbiota of obese mice in melanoma development. We first evaluated B16F10 melanoma growth in preclinical models for obesity: mice deficient for leptin (ob/ob) or adiponectin (AdpKO) and in wild-type mice (WT, C57BL/6J) fed a high-fat diet (HFD; 60% kcal from fat) for 12 weeks. The survival rates of ob/ob and HFD-fed mice were lower than those of their respective controls. AdpKO mice also died earlier than WT control mice. We then verified the involvement of IL-6 signaling in obese mice that were inoculated with melanoma cells. Both ob/ob and AdpKO mice had higher circulating IL-6 levels than wild-type mice. Melanoma tumor volumes in IL-6 KO mice fed an HFD were reduced compared to those of WT mice subjected to the same diet. Also evaluated the effect of microbiota in tumor development. Cohousing and fecal matter transfer experiments revealed that microbiota from ob/ob mice can stimulate tumor development in lean WT mice. Taken together, our data show that in some conditions IL-6 and the gut microbiota are key mediators that link obesity and melanoma.


Assuntos
Microbioma Gastrointestinal , Melanoma , Animais , Dieta Hiperlipídica/efeitos adversos , Interleucina-6 , Leptina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
13.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255553

RESUMO

Obesity-associated low-grade inflammation favors weight gain, whereas systemic infection frequently leads to anorexia. Thus, inflammatory signals can either induce positive or negative energy balance. In this study, we used whole-cell patch-clamp to investigate the acute effects of three important proinflammatory cytokines, tumor necrosis factor α (TNF-α), interleukin-6, and interleukin-1ß (IL-1ß) on the membrane excitability of agouti-related peptide (AgRP)- or proopiomelanocortin (POMC)-producing neurons. We found that both TNF-α and IL-1ß acutely inhibited the activity of 35-42% of AgRP-producing neurons, whereas very few POMC neurons were depolarized by TNF-α. Interleukin-6 induced no acute changes in the activity of AgRP or POMC neurons. Our findings indicate that the effect of TNF-α and IL-1ß, especially on the activity of AgRP-producing neurons, may contribute to inflammation-induced anorexia observed during acute inflammatory conditions.


Assuntos
Proteína Relacionada com Agouti/genética , Inflamação/genética , Interleucina-1beta/genética , Obesidade/genética , Fator de Necrose Tumoral alfa/genética , Animais , Anorexia/genética , Anorexia/metabolismo , Anorexia/patologia , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/genética , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeo Y/genética , Obesidade/metabolismo , Obesidade/patologia , Técnicas de Patch-Clamp , Pró-Opiomelanocortina/genética
14.
Sci Rep ; 10(1): 10160, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576879

RESUMO

A previous study demonstrated that a high-fat diet (HFD), administered for one-three-days, induces hypothalamic inflammation before obesity's established, and the long term affects leptin signaling/action due to inflammation. We investigate whether exposure to particulate matter of a diameter of ≤2.5 µm (PM2.5) in mice fed with a chow diet leads to similar metabolic effects caused by high-fat feeding. Compared to the filtered air group (FA), one-day-exposure-PM2.5 did not affect adiposity. However, five-days-exposure-PM2.5 increased hypothalamic microglia density, toll-like-receptor-4 (Tlr4), and the inhibitor-NF-kappa-B-kinase-epsilon (Ikbke) expression. Concurrently, fat mass, food intake (FI), and ucp1 expression in brown adipose tissue were also increased. Besides, decreased hypothalamic STAT3-phosphorylation and Pomc expression were found after twelve-weeks-exposure-PM2.5. These were accompanied by increased FI and lower energy expenditure (EE), leading to obesity, along with increased leptin and insulin levels and HOMA. Mechanistically, the deletion of Tlr4 or knockdown of the Ikbke gene in the hypothalamus was sufficient to reverse the metabolic outcomes of twelve-weeks-exposure-PM2.5. These data demonstrated that short-term exposure-PM2.5 increases hypothalamic inflammation, similar to a HFD. Long-term exposure-PM2.5 is even worse, leading to leptin resistance, hyperphagia, and decreased EE. These effects are most likely due to chronic hypothalamic inflammation, which is regulated by Tlr4 and Ikbke signaling.


Assuntos
Poluição do Ar/efeitos adversos , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/etiologia , Leptina/metabolismo , Microglia/patologia , Obesidade/etiologia , Material Particulado/efeitos adversos , Adipócitos Marrons/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica , Hiperfagia/etiologia , Hipotálamo/efeitos dos fármacos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/genética , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
Mol Cell Endocrinol ; 498: 110574, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494175

RESUMO

Several hypothalamic neuronal populations are directly responsive to growth hormone (GH) and central GH action regulates glucose and energy homeostasis. However, the potential role of GH signaling in proopiomelanocortin (POMC) neurons has not been studied yet. Thus, we investigated whether POMC neurons are responsive to GH and if ablation of GH receptor (GHR) or STAT5 in POMC cells leads to metabolic imbalances. Approximately 60% of POMC neurons of the arcuate nucleus exhibited STAT5 phosphorylation after intracerebroventricular GH injection. Ablation of GHR or STAT5 in POMC cells did not affect energy or glucose homeostasis. However, glucoprivic hyperphagia was blunted in male and female GHR knockout mice, and in male POMC-specific STAT5 knockout mice. Additionally, the absence of GHR in POMC neurons decreased glycemia during prolonged food restriction in male mice. Thus, GH action in POMC neurons regulates glucoprivic hyperphagia as well as blood glucose levels during prolonged food restriction.


Assuntos
Proteínas de Transporte/fisiologia , Glucose/metabolismo , Hiperfagia/patologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Fator de Transcrição STAT5/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Feminino , Hiperfagia/metabolismo , Masculino , Camundongos , Camundongos Knockout
16.
Brain Res ; 1714: 210-217, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851245

RESUMO

Growth hormone (GH) and prolactin (PRL) are known as pleiotropic hormones. Accordingly, the distribution of their receptors comprises several organs and tissues, including the central nervous system. The appropriate secretion of both hormones is essential for sexual maturation and maintenance of reproductive functions, while defects in their secretion affect puberty onset and can cause infertility. Conversely, GH therapy at a prepubertal age may accelerate puberty. On the other hand, hyperprolactinemia is a frequent cause of infertility. While the action of PRL in some central components of the Hypothalamic-Pituitary-Gonadal (HPG) axis, such as the kisspeptin neurons, has been well documented, the possible effects of GH in the hypothalamus are still elusive. Thus, the present study was designed to investigate whether somatomammotropin hormones are able to modulate the activity of critical neuronal components of the HPG axis, including kisspeptin neurons and cells of the ventral premammillary nucleus (PMv). Our results revealed that GH effects in kisspeptin neurons of the anteroventral periventricular and rostral periventricular nuclei or in PMv neurons relies predominantly on the recruitment of the signal transducer and activator of transcription 5 (STAT5) rather than through acute changes in resting membrane potential. Importantly, kisspeptin neurons located at the arcuate nucleus were not directly responsive to GH. Additionally, our findings further identified PMv neurons as potential targets of PRL, since PRL induces the phosphorylation of STAT5 and depolarizes PMv neurons. Combined, our data provide evidence that GH and PRL may affect the HPG axis via specific hypothalamic neurons.


Assuntos
Hormônio do Crescimento/metabolismo , Prolactina/metabolismo , Maturidade Sexual/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Gônadas/metabolismo , Hormônio do Crescimento/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosforilação , Sistema Hipófise-Suprarrenal/metabolismo , Prolactina/fisiologia , Fator de Transcrição STAT5/metabolismo
17.
Neurosci Lett ; 681: 12-16, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29772257

RESUMO

A small neuronal subpopulation in the medial nucleus of the amygdala (MeA), expressing the Kiss1 gene, is now considered an important mediator that integrates socio-sexual behavior and odor information in order to modulate the Hypothalamic-Pituitary-Gonadal (HPG) axis. Previous studies demonstrated that exogenous kisspeptin administration or selective activation of Kiss1-expressing neurons in the MeA modulates the onset of puberty, LH secretion and sexual behavior. These functions are supported by the known MeA neuronal connections. In the MeA, as well as in the hypothalamus, Kiss1 mRNA expression mostly depends on sex steroids levels. However, the percentage of Kiss1-expressing cells that co-express estrogen receptor α (ERα) in the MeA is currently unknown. Additionally, whether MeA kisspeptin neurons show Fos expression due to pheromone exposure is still undisclosed. In the present study, we used adult male and female mice that express a reporter protein under the Kiss1 promoters to determine the percentage of Kiss1-expressing neurons that co-express the ERα in the MeA and, whether those cells are activated by olfactory cues. We found a high percentage of Kiss1-expressing neurons in the MeA co-expressing the ERα. The proportion of co-expression was similar between male and female mice in diestrus. Interestingly, a low percentage of Kiss1-expressing neurons in the MeA co-express Fos after conspecific odor exposure, despite a significant increase of Fos positive cells in the MeA. Additionally, odor exposition leads to a sexually dimorphic change in Kiss1 expression in the posterior subdivision of the MeA. Our findings suggest that olfactory signals predominantly activate non-kisspeptin cells in the MeA to modulate responses to pheromones and therefore the HPG axis.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Kisspeptinas/biossíntese , Atrativos Sexuais/administração & dosagem , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Odorantes
18.
Brain Res ; 1678: 153-163, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079504

RESUMO

Previous studies indicate that the modification of adrenergic neurotransmission in median raphe nucleus (MRN) enhances or removes an inhibitory influence on food intake, possibly serotonergic, due to a presence of serotonin-producing neurons in that nucleus. Therefore, the aim of this study is evaluated whether the activity of neurons in the MRN and dorsal raphe nucleus (DRN) are affected by intracerebroventricular injection of adrenaline (AD) in free-feeding rats. Male Wistar rats with guide cannulae chronically implanted in the lateral ventricle were injected with AD followed by evaluation of ingestive behavioral parameters. Behavior was monitored and the amount of food ingested was assessed. The highest dose (20 nmol) of AD was the most effective dose in increasing food intake. Subsequently, AD 20 nmol was injected to study neuronal activity indicated by the presence of Fos protein and its co-localization with serotonergic neurons in the MRN and DRN of naive rats with or without access to food during the recording of behavior. The administration of AD 20 nmol increased Fos expression and double labeling with serotonergic neurons in the DRN in rats with access to food, but not in animals without access. No statistically significant changes in Fos expression were observed in the MRN in any of the experimental conditions tested. These results suggest that DRN serotonergic and non-serotonergic neurons are activated by post-prandial signals. In contrast, the absence of Fos expression in the MRN suggests that this nucleus does not participate in the circuit involved in the control of post-prandial satiety.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Epinefrina/metabolismo , Núcleos da Rafe/metabolismo , Animais , Núcleo Dorsal da Rafe/metabolismo , Ingestão de Alimentos/fisiologia , Expressão Gênica , Genes fos/genética , Genes fos/fisiologia , Infusões Intraventriculares , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo
19.
Mol Cell Endocrinol ; 448: 55-65, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28344041

RESUMO

Previous studies have shown that kisspeptin neurons are important mediators of prolactin's effects on reproduction. However, the cellular mechanisms recruited by prolactin to affect kisspeptin neurons remain unknown. Using whole-cell patch-clamp recordings of brain slices from kisspeptin reporter mice, we observed that 20% of kisspeptin neurons in the anteroventral periventricular nucleus was indirectly depolarized by prolactin via an unknown population of prolactin responsive neurons. This effect required the phosphatidylinositol 3-kinase signaling pathway. No effects on the activity of arcuate kisspeptin neurons were observed, despite a high percentage (70%) of arcuate neurons expressing prolactin-induced STAT5 phosphorylation. To determine whether STAT5 expression in kisspeptin cells regulates reproduction, mice carrying Stat5a/b inactivation specifically in kisspeptin cells were generated. These mutants exhibited an early onset of estrous cyclicity, indicating that STAT5 transcription factors exert an inhibitory effect on the timing of puberty.


Assuntos
Kisspeptinas/metabolismo , Fator de Transcrição STAT5/metabolismo , Maturidade Sexual , Transdução de Sinais , Animais , Núcleo Arqueado do Hipotálamo/citologia , Biomarcadores/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Hipotálamo Anterior/citologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Prolactina/farmacologia , Maturidade Sexual/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
Behav Brain Res ; 324: 87-95, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28212941

RESUMO

Previously, we showed that the blockade of α1-adrenoreceptors in the median raphe nucleus (MnR) increased food intake in free-feeding rats, indicating that adrenergic mechanisms in the MnR participate in the regulation of food intake. However, the impact of such a pharmacological manipulation on other neural circuits related to food intake remains unknown. In the current study, we sought to identify forebrain regions which are responsive to α1-adrenergic receptor blockade and presumably involved in the modulation of the feeding response. For this purpose, we examined the induction of c-Fos immunoreactivity in forebrain structures following injections of the α1-adrenoceptor antagonist prazosin into the MnR of free-feeding rats. To determine the chemical identity of hypothalamic c-Fos-positive cells, we then conducted double-label immunohistochemistry for Fos/orexin (OX) or Fos/melanin-concentrating hormone (MCH). Finally, we combined anterograde tracing from the MnR with immunohistochemical detection of orexin. Prazosin injections into the MnR significantly increased food intake. The ingestive response was accompanied by an increase in Fos expression in the basolateral amygdala (BLA) and lateral hypothalamic area (LHA). In the LHA, Fos expression occurred in neurons expressing OX, but not MCH. Combined anterograde tracing experiments revealed that LHA OX neurons are prominently targeted by MnR axons. These findings suggest that intra-MnR injection of prazosin, via activation of orexinergic neurons in the LHA and non-orexinergic neurons in the BLA, evoked a motivational response toward food intake.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Ingestão de Alimentos , Neurônios/metabolismo , Prazosina/administração & dosagem , Núcleos da Rafe/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Masculino , Melaninas/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA