Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Physiol Neurobiol ; 263: 38-46, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30831241

RESUMO

Hydrogen sulfide (H2S) is classically known for its toxic effects. More recently H2S has been documented as a neuromodulator. Here we investigated the central effects of aminooxyacetate (AOA; inhibitor of the H2S-synthesizing enzyme cystathionine ß-synthase, CBS) on cardiovascular, respiratory and thermoregulatory responses to hypercapnia in spontaneously hypertensive rats (SHR). To attain this goal we measured mean arterial pressure (MAP), heart rate (HR), ventilation (VE), and deep body temperature (Tb) of SHR and (normotensive) Wistar Kyoto (WKY) rats before and after microinjection of AOA (9 nmol/µL) or saline into the fourth ventricle immediately followed by 30-min hypercapnia exposure (7% inspired CO2). In saline-treated WKY rats, hypercapnia caused an increase in MAP accompanied by bradycardia, an increase in VE, and a drop in Tb. In AOA-treated WKY rats exposed to hypercapnia, the drug did not affect the increased MAP, potentiated the bradycardic response, attenuated the increased VE, and potentiated the drop in Tb. In saline-treated SHR, in comparison to the saline-treated WKY rats, hypercapnia elicited a minor, shorter-lasting increase in MAP with no changes in HR, evoked a greater increase in VE, and did not induce a drop in Tb. In AOA-treated SHR exposed to hypercapnia, the drug did not change the hypercapnia-induced cardiovascular and ventilatory responses while permitted a drop in Tb. Our findings indicate that AOA, an inhibitor of H2S production, modulates cardiorespiratory and thermoregulatory responses to hypercapnia in normotensive rats, whereas hypertension development in SHR is accompanied by suppression of the AOA effect on the cardiovascular and respiratory responses.


Assuntos
Ácido Amino-Oxiacético/farmacologia , Pressão Arterial , Regulação da Temperatura Corporal , Temperatura Corporal , Inibidores Enzimáticos/farmacologia , Frequência Cardíaca , Sulfeto de Hidrogênio/antagonistas & inibidores , Hipercapnia/fisiopatologia , Taxa Respiratória , Ácido Amino-Oxiacético/administração & dosagem , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/fisiologia , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Taxa Respiratória/efeitos dos fármacos , Taxa Respiratória/fisiologia
2.
Can J Physiol Pharmacol ; 95(2): 157-162, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27901369

RESUMO

Spontaneously hypertensive rats (SHR) display autonomic imbalance and abnormal body temperature (Tb) adjustments. Hydrogen sulfide (H2S) modulates hypoxia-induced hypothermia, but its role in SHR thermoregulation is unknown. We tested the hypothesis that SHR display peculiar thermoregulatory response to hypoxia and that endogenous H2S overproduced in the caudal nucleus of the solitary tract (NTS) of SHR modulates this response. SHR and Wistar rats were microinjected into the fourth ventricle with aminooxyacetate (AOA, H2S-synthezing enzyme inhibitor) or sodium sulfide (Na2S, H2S donor) and exposed to normoxia (21% inspired O2) or hypoxia (10% inspired O2, 30 min). Tb was continuously measured, and H2S production rate was assessed in caudal NTS homogenates. In both groups, AOA, Na2S, or saline (i.e., control; 1 µL) did not affect euthermia. Hypoxia caused similar decreases in Tb in both groups. AOA presented a longer latency to potentiate hypoxic hypothermia in SHR. Caudal NTS H2S production rate was higher in SHR. We suggest that increased bioavailability of H2S in the caudal NTS of SHR enables the adequate modulation of excitability of peripheral chemoreceptor-activated NTS neurons that ultimately induce suppression of brown adipose tissue thermogenesis, thus accounting for the normal hypoxic hypothermia.


Assuntos
Regulação da Temperatura Corporal , Sulfeto de Hidrogênio/metabolismo , Hipotermia Induzida , Hipóxia/fisiopatologia , Ácido Amino-Oxiacético/administração & dosagem , Ácido Amino-Oxiacético/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Hipóxia/complicações , Masculino , Microinjeções , Ratos , Ratos Endogâmicos SHR , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia , Sulfetos/administração & dosagem , Sulfetos/farmacologia
3.
Brain Res Bull ; 108: 94-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25262576

RESUMO

Hypoxia evokes a regulated decrease in deep body temperature (Tb). Hydrogen sulfide (H2S), a signaling molecule that belongs to the gasotransmitter family, has been demonstrated to participate in several brain-mediated responses. Rostral ventrolateral medulla (RVLM) is a brainstem region involved in thermoregulation. Recently, it has been shown that exogenous H2S modulates RVLM activity. In the present study, we investigated whether endogenously produced H2S in the RVLM plays a role in the control of hypoxia-induced hypothermia. Tb was measured before and after bilateral microinjection of aminooxyacetate (AOA, 0.2, 1 and 2 pmol/100 nl, a cystathionine ß-synthase, CBS, inhibitor) or vehicle into the RVLM followed by a 60-min normoxia (21% inspired O2) or hypoxia (7% inspired O2) exposure. Microinjection of AOA or vehicle did not change Tb during normoxia. Exposure to hypoxia evoked a typical decrease in Tb. Microinjection of AOA (2 pmol) into the RVLM followed by hypoxia significantly attenuated the decrease in Tb. Thus, endogenous H2S in the RVLM seems to play no role in the maintenance of basal Tb, whereas during hypoxia this gas plays a cryogenic role. Moreover, RVLM homogenates of rats exposed to hypoxia exhibited a decreased rate of H2S production. Our data are consistent with the notion that during hypoxia H2S synthesis is diminished in the RVLM facilitating hypothermia.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Hipotermia/fisiopatologia , Hipóxia/fisiopatologia , Bulbo/fisiopatologia , Ácido Amino-Oxiacético/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Hipotermia/etiologia , Hipóxia/complicações , Masculino , Bulbo/efeitos dos fármacos , Ratos , Ratos Wistar
4.
Respir Physiol Neurobiol ; 200: 97-104, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24953676

RESUMO

Hydrogen sulfide (H2S) is now recognized as a new gaseous transmitter involved in several brain-mediated responses. The rostral ventrolateral medulla (RVLM)/Bötzinger complex is a region in the brainstem that is involved in cardiovascular and respiratory functions. Recently, it has been shown that exogenous H2S in the RVLM modulates autonomic function and thus blood pressure. In the present study, we investigated whether H2S, endogenously produced in the RVLM/Bötzinger complex, plays a role in the control of hypoxia-induced hyperventilation. Ventilation (VE) was measured before and after bilateral microinjection of Na2S (H2S donor, 0.04, 1 and 2 pmol/100 nl) or aminooxyacetate (AOA, 0.2, 1 and 2 pmol/100 nl, a cystathionine ß-synthase, CBS, inhibitor) into the RVLM/Bötzinger complex followed by a 60-min period of hypoxia (7% inspired O2) or normoxia exposure. Control rats received microinjection of vehicle. Microinjection of vehicle, AOA or Na2S did not change VE in normoxic conditions. Exposure to hypoxia evoked a typical increase in VE. Microinjection of Na2S (2 pmol) followed by hypoxia exposure attenuated the hyperventilation. Conversely, microinjection of AOA (2 pmol) into the RVLM/Bötzinger complex caused an increase in the hypoxia-induced hyperventilation. Thus, endogenous H2S in the RVLM/Bötzinger complex seems to play no role in the maintenance of basal pulmonary ventilation during normoxia whereas during hypoxia H2S has a downmodulatory function. Homogenates of RVLM/Bötzinger complex of animals previously exposed to hypoxia for 60 min exhibited a decreased rate of H2S production. Our data are consistent with the notion that the gaseous messenger H2S synthesis is downregulated in the RVLM/Bötzinger complex during hypoxia favoring hyperventilation.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Hiperventilação/fisiopatologia , Hipóxia/fisiopatologia , Bulbo/fisiopatologia , Ácido Amino-Oxiacético/farmacologia , Animais , Cateteres de Demora , Fármacos do Sistema Nervoso Central/farmacologia , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Hiperventilação/tratamento farmacológico , Hiperventilação/etiologia , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Masculino , Bulbo/efeitos dos fármacos , Microinjeções , Pletismografia , Ratos Wistar , Sulfatos/farmacologia
5.
Eur J Pharmacol ; 738: 49-56, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24876060

RESUMO

Hydrogen sulfide (H2S) is a gasotransmitter synthesized in peripheral tissues by the enzyme cystathionine gamma-lyase (CSE). This gas has been documented to be involved in a wide variety of processes including inflammation and nociception. The aim of the present study was to investigate the role of the peripheral H2S pathway in nociceptive response to the orofacial formalin experimental model of pain. Orofacial pain was induced by subcutaneous injection of formalin (1.5%, 50 µl) into the upper lip of rats, and the time spent rubbing the face was measured at 3-min intervals for 45 min. Formalin induced a marked biphasic pain (first phase: 0-3 min; second phase: 15-33 min). Pretreatment with H2S donor (Na2S; 90 µmol/kg), CSE inhibitor (propargylglycine; 26.5 and 88.4 µmol/kg), or a preferential blocker of T-type Ca(2+) channels (mibefradil; 0.28 and 2.81 µmol/kg) attenuated the second phase of face rubbing when injected locally as well as systemically. Pretreatment with a selective blocker of K(+)ATP channels (glybenclamide; 2.81 µmol/kg) suppressed the Na2S-mediated attenuation of the formalin-induced pain second phase. Taken together these results suggest that endogenously produced H2S plays a pronociceptive role probably via T-type Ca(2+) channels, whereas exogenous H2S exerts antinociceptive effects mediated by K(+)ATP channels.


Assuntos
Dor Facial/induzido quimicamente , Dor Facial/metabolismo , Formaldeído/efeitos adversos , Sulfeto de Hidrogênio/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Canais de Cálcio Tipo T/metabolismo , Dor Facial/psicologia , Canais KATP/metabolismo , Lábio/efeitos dos fármacos , Lábio/metabolismo , Masculino , Nociceptividade/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA