Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
J Hepatocell Carcinoma ; 11: 1357-1373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011124

RESUMO

Background: CD276 is an emerging immune checkpoint molecule that has been implicated in various cancers. However, its specific role in hepatocellular carcinoma (HCC) remains unclear. This study examined the impact of CD276 on patient prognosis and the tumor microenvironment (TME). Methods: The Cancer Genome Atlas (TCGA) database was utilized to evaluate CD276 expression in HCC and the association between CD276 and immune indicators was also analyzed. The signaling pathways correlated with CD276 expression were identified by gene set enrichment analysis (GSEA). Different algorithms were used to assess immune cell infiltration. The effect of CD276 knockdown on HCC cell phenotypes and its relationship with macrophage polarization was examined using the cell counting kit 8 (CCK-8) assay and co-culture system. Results: CD276 was upregulated in HCC and associated with unfavorable clinical outcomes. Hgh CD276 expression was associated with enrichment of the G2/M checkpoint, E2F targets, and mitotic spindles. CD276 expression was correlated with the infiltration of immune cells, including high level of tumor-associated macrophages and low levels of CD8+ T cells. Knockdown of CD276 decreased HCC cell proliferation and increased apoptosis. CD276 silencing in HCC cells and co-culture with THP-1-derived macrophages had a regulatory effect on macrophage polarization and macrophage-mediated cell proliferation and migration. Conclusion: CD276 expression in HCC is associated with unfavorable clinical outcomes and may contribute to the development of an immunosuppressive microenvironment. Specifically, CD276 was associated with alterations in immune cell infiltration, immune marker expression, and macrophage polarization during HCC progression, suggesting its potential as a prognostic indicator and promising target for immunotherapeutic intervention in HCC.

2.
Cell Mol Gastroenterol Hepatol ; : 101377, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969205

RESUMO

BACKGROUND AND AIMS: Transcriptome sequencing revealed high expression of DDR2 in oxaliplatin-resistant hepatocellular carcinoma (HCC). This study aimed to explore the role of DDR2 in oxaliplatin resistance and immune evasion in HCC. METHODS: Oxaliplatin-resistant HCC cell lines were established. The interaction between DDR2 and STAT3 was investigated, along with the mechanisms involved in DDR2/STAT3-mediated PD-L1 upregulation and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) accumulation both in vitro and in vivo. RESULTS: DDR2 was found to induce the phosphorylation of STAT3, leading to its nuclear translocation. Conversely, the activation of STAT3 enhanced DDR2 expression. A positive feedback loop involving DDR2/STAT3 was identified in oxaliplatin-resistant HCC and associated with PD-L1 upregulation, and PMN-MDSCs accumulation was identified in oxaliplatin-resistant HCC. Knockdown of DDR2 and STAT3 sensitized oxaliplatin-resistant HCC cells to oxaliplatin and resulted in decreased PMN-MDSCs and increased CD8+ T cells in the tumor microenvironment. Enzyme-linked immunosorbent array and MDSC transwell migration assays indicated that oxaliplatin-resistant HCC cells recruited PMN-MDSCs through CCL20. Dual luciferase reporter assays demonstrated that STAT3 can directly enhance the transcription of PD-L1 and CCL20. Furthermore, treatment with a PD-L1 antibody in combination with CCL20 blockade had significant antitumor effects on oxaliplatin-resistant HCC. CONCLUSIONS: Our findings revealed a positive feedback mechanism involving DDR2 and STAT3 that mediates the immunosuppressive microenvironment and promotes oxaliplatin resistance and immune evasion via PD-L1 upregulation and PMN-MDSC recruitment. Targeting the DDR2/STAT3 pathway may be a promising therapeutic strategy to overcome immune escape and chemoresistance in HCC.

3.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1834-1847, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812196

RESUMO

This study compared the therapeutic difference effects of the raw and scorched rhubarb for the treatment of ulcerative colitis(UC) and explored their difference in chemical components and mechanisms by using ultra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-QE-Orbitrap-MS) and network pharmacology. The UC therapeutic effects of Shaoyao Decoction with the raw rhubarb or the scorched rhubarb were evaluated by dextran sulfate sodium(DSS)-induced mouse model. The results showed that Shaoyao Decoction with either the raw rhubarb or the scorched rhubarb could relieve the UC symptoms of mice to different extents, while the scorched rhubarb-based formula showed advantages in reducing hemorrhagic diarrhea and inflammation levels. UPLC-QE-Orbitrap-MS was used to identify a total of 78 small molecules in the water decoction of the raw and scorched rhubarb. Multivariate statistical methods were used to screen components increasing significantly after the scorching process. The seven compounds included five free anthraquinones, gallic acid, and 5-hydroxymethylfurfural(HMF). Meanwhile, the nine compounds decreasing scorching were mainly combined anthraquinones and catechins-related compounds. Network pharmacology and molecular docking suggested that free anthraquinones, gallic acid, and 5-HMF may act on core targets such as B-cell lymphoma-2(BCL2), epidermal growth factor receptor(EGFR), tumor necrosis factor(TNF), and caspase-3(CASP3) and influence the signaling pathways such as phosphoinositide-3-kinase/protein kinase B(PI3K/Akt), hypoxia inducible factor-1(HIF-1), TNF, and mitogen-activated protein kinase(MAPK), so as to regulate the inflammation response, oxidative stress, and cell apoptosis to relieve UC symptoms. This study compared the therapeutic effects and chemical components of the raw and scorched rhubarb, providing the clinical reference for using rhubarb to treat UC.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Espectrometria de Massas , Farmacologia em Rede , Rheum , Rheum/química , Animais , Colite Ulcerativa/tratamento farmacológico , Camundongos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Humanos
4.
PLoS One ; 19(5): e0302879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709714

RESUMO

BACKGROUND: The incidence of childhood malnutrition i.e., both obesity and undernutrition, is on a rise. While there is extensive evidence of the influence of body mass index (BMI) on the survival and other important outcomes of adult cancers, the impact of childhood BMI on one of the common pediatric cancers i.e., leukemia is not well studied. METHODS: Systematic search of PubMed, Scopus, and Google Scholar databases was done to identify studies that were conducted among pediatric patients with leukemia and had examined outcomes of interest based on BMI at the time of diagnosis. RESULTS: Effect sizes were reported as pooled hazards ratio (HR) along with 95% confidence intervals (CI). A total of 17 studies were included. Compared to pediatric leukemia patients with normal BMI, underweight (HR 1.07, 95% CI: 1.04, 1.11) and obese (HR 1.42, 95% CI: 1.18, 1.71) children with leukemia had higher risks of overall mortality. Underweight (HR 1.10, 95% CI: 1.02, 1.19) and obese (HR 1.34, 95% CI: 1.15, 1.55) pediatric leukemia patients had a tendency to lower event-free survival compared to children with normal BMI. The risk of relapse was not significant for underweight, overweight, and obese children. CONCLUSIONS: Both underweight and obese status at the time of diagnosis were associated with poor survival outcomes in pediatric patients with leukemia.


Assuntos
Índice de Massa Corporal , Humanos , Criança , Leucemia/diagnóstico , Leucemia/mortalidade , Leucemia/complicações , Magreza/complicações , Obesidade/complicações , Pré-Escolar
5.
Int J Biol Sci ; 20(7): 2763-2778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725845

RESUMO

Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting ß-catenin/TGF-ß1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Carcinoma Hepatocelular , Neoplasias Hepáticas , Linfócitos T Reguladores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Humanos , Aldeído-Desidrogenase Mitocondrial/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/imunologia , Microambiente Tumoral , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Multiômica
6.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690966

RESUMO

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Assuntos
Neoplasias da Mama , Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , RNA , Telomerase , Humanos , Telomerase/metabolismo , Telomerase/análise , Pontos Quânticos/química , RNA/metabolismo , RNA/análise , Feminino , Carbocianinas/química , Técnicas Biossensoriais/métodos
7.
Int J Oncol ; 64(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38757347

RESUMO

Cellular senescence has a complex role in lymphocyte carcinogenesis and drug resistance of lymphomas. Senescent lymphoma cells combine with immunocytes to create an ageing environment that can be reprogrammed with a senescence­associated secretory phenotype, which gradually promotes therapeutic resistance. Certain signalling pathways, such as the NF­κB, Wnt and PI3K/AKT/mTOR pathways, regulate the tumour ageing microenvironment and induce the proliferation and progression of lymphoma cells. Therefore, targeting senescence­related enzymes or their signal transduction pathways may overcome radiotherapy or chemotherapy resistance and enhance the efficacy of relapsed/refractory lymphoma treatments. Mechanisms underlying drug resistance in lymphomas are complex. The ageing microenvironment is a novel factor that contributes to drug resistance in lymphomas. In terms of clinical translation, some senolytics have been used in clinical trials on patients with relapsed or refractory lymphoma. Combining immunotherapy with epigenetic drugs may achieve better therapeutic effects; however, senescent cells exhibit considerable heterogeneity and lymphoma has several subtypes. Extensive research is necessary to achieve the practical application of senolytics in relapsed or refractory lymphomas. This review summarises the mechanisms of senescence­associated drug resistance in lymphoma, as well as emerging strategies using senolytics, to overcome therapeutic resistance in lymphoma.


Assuntos
Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Linfoma , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Senescência Celular/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/patologia , Linfócitos/imunologia , Linfócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Senoterapia/farmacologia , Senoterapia/uso terapêutico , Envelhecimento
8.
Anal Chim Acta ; 1298: 342395, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462345

RESUMO

DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers. DNA-modifying enzymes have emerged as the potential biomarkers in early diagnosis of diseases and new therapeutic targets in genomic research. Consequently, the development of highly specific and sensitive biosensors for the detection of DNA-modifying enzymes is of great importance for basic biomedical research, disease diagnosis, and drug discovery. Single-molecule fluorescence detection has been widely implemented in the field of molecular diagnosis due to its simplicity, high sensitivity, visualization capability, and low sample consumption. In this paper, we summarize the recent advances in single-molecule counting-based biosensors for DNA-modifying enzyme (i.e, alkaline phosphatase, DNA methyltransferase, DNA glycosylase, flap endonuclease 1, and telomerase) assays in the past four years (2019 - 2023). We highlight the principles and applications of these biosensors, and give new insight into the future challenges and perspectives in the development of single-molecule counting-based biosensors.


Assuntos
Técnicas Biossensoriais , DNA , Biomarcadores
9.
Anal Chem ; 96(11): 4647-4656, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441540

RESUMO

Telomerase is a basic reverse transcriptase that maintains the telomere length in cells, and accurate and specific sensing of telomerase in living cells is critical for medical diagnostics and disease therapeutics. Herein, we demonstrate for the first time the construction of an enzymatically controlled DNA nanomachine with endogenous apurinic/apyrimidinic endonuclease 1 (APE1) as a driving force for one-step imaging of telomerase in living cells. The DNA nanomachine is designed by rational engineering of substrate probes and reporter probes embedded with an enzyme-activatable site (i.e., AP site) and their subsequent assembly on a gold nanoparticle (AuNP). Upon recognition and cleavage of the AP site in the substrate probe by APE1, the loop of the substrate probe unfolds, exposing telomeric primer (TP) with the 3'-OH end. Subsequently, the TP is elongated by telomerase at the 3'-OH end to generate a long telomeric product. The resultant telomeric product acts as a swing arm that can hybridize with a reporter probe to initiate the APE1-powered walking reaction, ultimately generating a significantly enhanced fluorescence signal. Notably, endogenous APE1 is used as the driving force of the DNA nanomachine, avoiding the introduction of exogenous auxiliary cofactors into the cellular microenvironment. Owing to the high kinetics and high amplification efficiency of the APE1-powered DNA nanomachine, this strategy enables one-step sensitive sensing of telomerase in vitro and in vivo. It can successfully discriminate telomerase activity between cancer cells and normal cells, screen telomerase inhibitors, and monitor the variations of telomerase activity in living cells, offering a prospective platform for molecular diagnostics and drug discovery.


Assuntos
Nanopartículas Metálicas , Telomerase , Humanos , Telomerase/metabolismo , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Células HeLa , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
10.
Anal Chem ; 96(11): 4487-4494, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451469

RESUMO

O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/µL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.


Assuntos
Carbocianinas , DNA Catalítico , Guanina/análogos & derivados , Pontos Quânticos , Humanos , DNA Catalítico/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA/química , Desmetilação
11.
Anal Chem ; 96(13): 5323-5330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501982

RESUMO

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Guanina/análogos & derivados , Humanos , DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Dano ao DNA , Biomarcadores , Reparo do DNA
12.
Chem Commun (Camb) ; 60(22): 3075-3078, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38404229

RESUMO

We construct a simple fluorescent biosensor for single-molecule counting of flap endonuclease 1 (FEN1) based on ligase detection reaction (LDR) amplification-activated CRISPR-Cas12a. This biosensor exhibits excellent selectivity and high sensitivity with a detection limit (LOD) of 1.31 × 10-8 U. Moreover, it can be employed to screen the FEN1 inhibitors and quantitatively measure the FEN1 activity in human cells and breast cancer tissues, holding great promise in clinical diagnosis and drug discovery.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Endonucleases Flap , Sistemas CRISPR-Cas/genética , Corantes , Descoberta de Drogas
13.
Arab J Gastroenterol ; 25(2): 165-169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403495

RESUMO

BACKGROUND AND STUDY AIMS: Endoscopic minimally invasive treatment of internal hemorrhoids may cause postoperative pain. The aim of the study is to investigate the analgesic effect of lidocaine plus lauromacrogol on postoperative pain caused by endoscopic rubber band ligation (ERBL) combined with injection sclerotherapy (IS) for internal hemorrhoids treatment. PATIENTS AND METHODS: Clinical data of grade Ⅲ internal hemorrhoids patients who underwent ERBL combined with IS in department of Digestive Medicine, Shenzhen Hospital of Southern Medical University, were retrospectively analyzed. According to difference in the composition of sclerosing solution, the patients were divided into control group (lauromacrogol group, 46 patients) and study group (lidocaine plus lauromacrogol group, 20 patients). Postoperative pain (quantized by Visual Analogue Scale, VAS), pain relief time and postoperative adverse reactions were compared. The therapeutic effect was followed up 1 month after operation. RESULTS: VAS of postoperative pain was 0.80 ± 0.42 points and pain relief time was 0.90 ± 0.56 days in the study group, while VAS of postoperative pain was 4.11 ± 1.37 points and pain relief time was 2.57 ± 0.83 days in the control group, there was statistical difference between them (P < 0.05). There was no significant difference in the incidence of postoperative adverse reactions and follow-up therapeutic effect between the control group and the study group. CONCLUSION: Lidocaine plus lauromacrogol is useful for pain alleviation on ERBL combined with IS for internal hemorrhoids treatment because of its convenient procedure, low adverse reaction incidence and good therapeutic effect, which is worthy of promotion.


Assuntos
Anestésicos Locais , Hemorroidas , Lidocaína , Medição da Dor , Dor Pós-Operatória , Escleroterapia , Humanos , Hemorroidas/terapia , Hemorroidas/cirurgia , Lidocaína/administração & dosagem , Lidocaína/uso terapêutico , Estudos Retrospectivos , Escleroterapia/métodos , Escleroterapia/efeitos adversos , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/etiologia , Masculino , Ligadura/métodos , Feminino , Pessoa de Meia-Idade , Anestésicos Locais/administração & dosagem , Adulto , Soluções Esclerosantes/administração & dosagem , Soluções Esclerosantes/uso terapêutico , Polidocanol/administração & dosagem , Polidocanol/uso terapêutico , Terapia Combinada , Idoso
14.
Front Nutr ; 11: 1348930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389796

RESUMO

Objectives: One-carbon metabolism (OCM) significantly influences fetal growth and neurodevelopment through transferring methyl group to biomolecules, during which folate, methionine, choline and betaine function as methyl donor nutrients, while vitamin B2, B6, B12 function as enzyme cofactors, and homocysteine (Hcy) and S-adenosyl methionine (SAM) are functional metabolites. This study aimed to assess blood OCM index levels and explore their relationships among Chinese pregnant women. Methods: Data were obtained from the baseline of the Mother-Child Nutrition and Health Cohort Study. Pregnant women, voluntarily recruited from September 2020 to June 2022 during antenatal examinations in five Chinese cities at 24-32 gestational weeks, provided fasting venous blood samples. Measurements included RBC and serum folate, serum vitamin B2, B6, B12, choline, betaine, methionine, total Hcy (tHcy), and plasma SAM. Sociodemographic characteristics and pregnancy-related conditions were collected via a self-designed questionnaire. Results: Of 397 participants, 82.6% were in mid-pregnancy (24-27 gestational weeks) and 17.4% were in late-pregnancy (28-32 gestational weeks). Serum folate, vitamin B6, and B12 deficiencies were 2.5, 1.3, and 8.3%, respectively. Elevated tHcy (≥10 µmol/L) was observed in 1.8% of pregnant women. Elderly pregnant women (aged 35 and above) exhibited significantly lower serum methionine levels (p < 0.05), while multiparous women had lower RBC folate levels (p < 0.05), and lower serum methionine and vitamin B12 levels (p < 0.10, not statistically significant). Partial correlation analysis revealed positive associations between RBC folate and cofactor vitamin B12 (r = 0.244, p < 0.05) in the folate cycle, as well as significant correlations between two methyl donor paths [serum folate was significantly related to serum choline (r = 0.172) and betaine (r = 0.193)]. As functional biomarkers of OCM, serum tHcy exhibited negative associations with RBC folate (ß = -0.330, p < 0.05) and vitamin B6 (ß = -0.317, p < 0.05), and plasma SAM displayed a positive association with serum betaine (ß = 0.610, p < 0.05), while negatively associated with serum vitamin B6 (ß = -0.181, p < 0.05). Conclusion: The blood OCM exhibited imbalances during mid-to-late pregnancy, characterized by lower levels of folate, vitamin B6, and B12, alongside elevated tHcy levels. Adequate folate and vitamin B6 emerged as significant predictors of lower tHcy levels. Additionally, serum betaine showed a positive correlation with plasma SAM. This suggests the importance of not only ensuring sufficient folate but also optimizing other OCM-related nutrients throughout pregnancy.

15.
Nano Lett ; 24(7): 2360-2368, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38347661

RESUMO

Accurate and sensitive analysis of circulating tumor cells (CTCs) in human blood provides a non-invasive approach for the evaluation of cancer metastasis and early cancer diagnosis. Herein, we demonstrate the controllable assembly of a quantum dot (QD)-based aptasensor guided by CRISPR/Cas12a for direct measurement of CTCs in human blood. We introduce a magnetic bead@activator/recognizer duplex core-shell structure to construct a multifunctional platform for the capture and direct detection of CTCs in human blood, without the need for additional CTC release and re-identification steps. Notably, the introduction of magnetic separation ensures that only a target-induced free activator can initiate the downstream catalysis, efficiently avoiding the undesired catalysis triggered by inappropriate recognition of the activator/recognizer duplex structure by crRNAs. This aptasensor achieves high CTC-capture efficiency (82.72%) and sensitive detection of CTCs with a limit of detection of 2 cells mL-1 in human blood, holding great promise for the liquid biopsy of cancers.


Assuntos
Células Neoplásicas Circulantes , Pontos Quânticos , Humanos , Células Neoplásicas Circulantes/patologia , Pontos Quânticos/química , Sistemas CRISPR-Cas/genética , Biópsia Líquida
16.
Cancer Cell Int ; 24(1): 13, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184573

RESUMO

Gastric cancer remains a leading cause of cancer-related death worldwide, largely due to inadequate screening methods, late diagnosis, and limited treatment options. Liquid biopsy has emerged as a promising non-invasive approach for cancer screening and prognosis by detecting circulating tumor components like circulating tumor DNA (ctDNA) in the blood. Numerous gastric cancer-specific ctDNA biomarkers have now been identified. CtDNA analysis provides insight into genetic and epigenetic alterations in tumors, holding promise for predicting treatment response and prognosis in gastric cancer patients. This review summarizes current research on ctDNA biology and detection technologies, while highlighting clinical applications of ctDNA for gastric cancer diagnosis, prognosis, and guiding treatment decisions. Current challenges and future perspectives for ctDNA analysis are also discussed.

17.
J Immunother Cancer ; 12(1)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272562

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is an exceptionally immunosuppressive malignancy characterized by limited treatment options and a dismal prognosis. Macrophages constitute the primary and heterogeneous immune cell population within the HCC microenvironment. Our objective is to identify distinct subsets of macrophages implicated in the progression of HCC and their resistance to immunotherapy. METHODS: Intratumoral macrophage-specific marker genes were identified via single-cell RNA sequencing analyses. The clinical relevance of phospholipase A2 Group VII (PLA2G7), a pivotal enzyme in phospholipid metabolism, was assessed in patients with HCC through immunohistochemistry and immunofluorescence. Flow cytometry and an in vitro co-culture system were used to elucidate the specific role of PLA2G7 in macrophages. Orthotopic and subcutaneous HCC mouse models were employed to evaluate the potential of the PLA2G7 inhibitor in complementing immune checkpoint blockade (ICB) therapy. RESULTS: Single-cell RNA sequencing analyses disclosed predominant PLA2G7 expression in intratumoral macrophages within the HCC microenvironment. The macrophage-specific PLA2G7 was significantly correlated with poorer prognosis and immunotherapy resistance in patients with HCC. PLA2G7high macrophages represent a highly immunosuppressive subset and impede CD8 T-cell activation. Pharmacological inhibition of PLA2G7 by darapladib improved the therapeutic efficacy of anti-programmed cell death protein 1 antibodies in the HCC mouse models. CONCLUSIONS: Macrophage-specific PLA2G7 serves as a novel biomarker capable of prognosticating immunotherapy responsiveness and inhibiting PLA2G7 has the potential to enhance the efficacy of ICB therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Macrófagos , Imunoterapia , Prognóstico , Microambiente Tumoral , 1-Alquil-2-acetilglicerofosfocolina Esterase/uso terapêutico
18.
Int Immunopharmacol ; 128: 111431, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244520

RESUMO

Therapeutic cancer vaccines, which induce anti-tumor immunity by targeting specific antigens, constitute a promising approach to cancer therapy. Our previous work proposed an optimized heterologous immunization strategy using cancer gene vaccines co-targeting MUC1 and survivin. Administration of a DNA vaccine three times within a week followed by a single recombinant MVA (rMVA) boost was able to efficiently induce anti-tumor immunity and inhibit tumor growth in tumor-bearing mouse models However, the complex immunosuppressive tumor microenvironment always limits infiltration by vaccine-induced T cells. Modifying the immunosuppressive microenvironment of tumors would be a breakthrough in enhancing the therapeutic effects of a cancer vaccine. Recent studies have reported that metformin, a type 2 diabetes drug, may ameliorate the tumor microenvironment, thereby enhancing anti-tumor immunity. Here, we tested whether the combinational therapeutic strategy of cancer vaccines administered with a heterologous prime-boost strategy with metformin enhanced anti-tumor effects in a melanoma mouse model. The results showed that metformin promoted the transition of M2-tumor-associated macrophages (M2-TAM) to M1-TAM, induced more tumor-infiltrating proliferative CD4 and CD8 T cells, and decreased exhausted T cells. This combinational treatment induced anti-tumor immunity from cancer vaccines, ameliorating the tumor microenvironment, showing improved tumor inhibition, and prolonging survival in tumor-bearing mice compared with either a cancer vaccine or metformin alone.


Assuntos
Vacinas Anticâncer , Diabetes Mellitus Tipo 2 , Melanoma , Metformina , Vacinas de DNA , Animais , Camundongos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Microambiente Tumoral
19.
Food Chem ; 443: 138547, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271897

RESUMO

In the present study, we hypothesised that Trichosanthes kirilowii seed protein isolate (TPI) obtained by different extraction methods have distinct structure, functional attributes and volatile profiles. Alkaline-extracted isolate (AE-TPI) exhibited lower protein content and a darker colour than the other two isolates because more polyphenols and pigments were coextracted. Salt-extracted isolate (SE-TPI) and AE-TPI had higher in vitro protein digestibility than reverse micelle-extracted isolate (RME-TPI) due to higher degrees of denaturation, which enabled them to be more susceptible to proteolysis. The SE-TPI gel resulted in a stronger gel network and greater hardness than the other two isolate gels. In the volatile profile, SE-TPI (22) yielded the largest number of volatile compounds, followed by AE-TPI (20) and RME-TPI (15). The current results indicated that the structure, functional properties and volatile profiles of TPI are largely influenced by the extraction technique.


Assuntos
Trichosanthes , Trichosanthes/química , Sementes/química
20.
Cardiovasc Res ; 120(5): 548-559, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38271270

RESUMO

AIMS: Elucidating the impacts of long-term spaceflight on cardiovascular health is urgently needed in face of the rapid development of human space exploration. Recent reports including the NASA Twins Study on vascular deconditioning and aging of astronauts in spaceflight are controversial. The aims of this study were to elucidate whether long-term microgravity promotes vascular aging and the underlying mechanisms. METHODS AND RESULTS: Hindlimb unloading (HU) by tail suspension was used to simulate microgravity in rats and mice. The dynamic changes of carotid stiffness in rats during 8 weeks of HU were determined. Simulated microgravity led to carotid artery aging-like changes as evidenced by increased stiffness, thickness, fibrosis, and elevated senescence biomarkers in the HU rats. Specific deletion of the mechanotransducer Piezo1 in vascular smooth muscles significantly blunted these aging-like changes in mice. Mechanistically, mechanical stretch-induced activation of Piezo1 elevated microRNA-582-5p in vascular smooth muscle cells, with resultant enhanced synthetic cell phenotype and increased collagen deposition via PTEN/PI3K/Akt signalling. Importantly, inhibition of miRNA-582-5p alleviated carotid fibrosis and stiffness not only in HU rats but also in aged rats. CONCLUSIONS: Long-term simulated microgravity induces carotid aging-like changes via the mechanotransducer Piezo1-initiated and miRNA-mediated mechanism.


Assuntos
Artérias Carótidas , Canais Iônicos , Mecanotransdução Celular , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Rigidez Vascular , Simulação de Ausência de Peso , Animais , Envelhecimento/metabolismo , Envelhecimento/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Elevação dos Membros Posteriores , Canais Iônicos/metabolismo , Canais Iônicos/genética , Mecanotransdução Celular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA