Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 99: 105876, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876226

RESUMO

Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species. Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.


Assuntos
Benzilisoquinolinas , Fator Promotor de Maturação , Meiose , Mesotelina , Oócitos , Animais , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Feminino , Benzilisoquinolinas/farmacologia , Fator Promotor de Maturação/metabolismo , Camundongos , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Camundongos Endogâmicos ICR , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos , Ciclina B1/metabolismo , Ciclina B1/genética
2.
Cell Prolif ; 56(3): e13372, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36480483

RESUMO

Maternal ageing is one of the major causes of reduced ovarian reserve and low oocyte quality in elderly women. Decreased oocyte quality is the main cause of age-related infertility. Mitochondria are multifunctional energy stations that determine the oocyte quality. The mitochondria in aged oocytes display functional impairments with mtDNA damage, which leads to reduced competence and developmental potential of oocytes. To improve oocyte quality, mitochondrial supplementation is carried out as a potential therapeutic approach. However, the selection of suitable cells as the source of mitochondria remains controversial. We cultivated endometrial mesenchymal stem cells (EnMSCs) from aged mice and extracted mitochondria from EnMSCs. To improve the quality of oocytes, GV oocytes were supplemented with mitochondria via microinjection. And MII oocytes from aged mice were fertilized by intracytoplasmic sperm injection (ICSI), combining EnMSCs' mitochondrial microinjection. In this study, we found that the mitochondria derived from EnMSCs could significantly improve the quality of aged oocytes. Supplementation with EnMSC mitochondria significantly increased the blastocyst ratio of MII oocytes from aged mice after ICSI. We also found that the birth rate of mitochondria-injected ageing oocytes was significantly increased after embryo transplantation. Our study demonstrates that supplementation with EnMSC-derived mitochondria can improve the quality of oocytes and promote embryo development in ageing mice, which might provide a prospective strategy for clinical treatment.


Assuntos
Oócitos , Sêmen , Masculino , Feminino , Animais , Camundongos , Oócitos/metabolismo , Mitocôndrias , Fertilização , Suplementos Nutricionais
3.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35546066

RESUMO

Mammalian early embryo cells have complex DNA repair mechanisms to maintain genomic integrity, and homologous recombination (HR) plays the main role in response to double-strand DNA breaks (DSBs) in these cells. Polo-like kinase 1 (PLK1) participates in the HR process and its overexpression has been shown to occur in a variety of human cancers. Nevertheless, the regulatory mechanism of PLK1 remains poorly understood, especially during the S and G2 phase. Here, we show that protein phosphatase 4 catalytic subunit (PPP4C) deletion causes severe female subfertility due to accumulation of DNA damage in oocytes and early embryos. PPP4C dephosphorylated PLK1 at the S137 site, negatively regulating its activity in the DSB response in early embryonic cells. Depletion of PPP4C induced sustained activity of PLK1 when cells exhibited DNA lesions that inhibited CHK2 and upregulated the activation of CDK1, resulting in inefficient loading of the essential HR factor RAD51. On the other hand, when inhibiting PLK1 in the S phase, DNA end resection was restricted. These results demonstrate that PPP4C orchestrates the switch between high-PLK1 and low-PLK1 periods, which couple the checkpoint to HR.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Animais , Proteínas de Ciclo Celular , Linhagem Celular , DNA/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA/genética , Desenvolvimento Embrionário/genética , Feminino , Recombinação Homóloga , Mamíferos/genética , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Quinase 1 Polo-Like
4.
Biol Reprod ; 100(6): 1673-1685, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087039

RESUMO

Family with sequence similarity 46, member C (FAM46C) is a highly conserved non-canonical RNA polyadenylation polymerase that is abundantly expressed in human and mouse testes and is frequently mutated in patients with multiple myeloma. However, its physiological role remains largely unknown. In this study, we found that FAM46C is specifically localized to the manchette of spermatids in mouse testes, a transient microtubule-based structure mainly involved in nuclear shaping and intra-flagellar protein traffic. Gene knockout of FAM46C in mice resulted in male sterility, characterized by the production of headless spermatozoa in testes. Sperm heads were intermittently found in the epididymides of FAM46C knockout mice, but their fertilization ability was severely compromised based on the results of intracytoplasmic sperm injection assays. Interestingly, our RNA-sequencing analyses of FAM46C knockout testes revealed that mRNA levels of only nine genes were significantly altered compared to wild-type ones (q < 0.05). When considering alternate activities for FAM46C, in vitro assays demonstrated that FAM46C does not exhibit protein kinase or AMPylation activity against general substrates. Together, our data show that FAM46C in spermatids is a novel component in fastening the sperm head and flagellum.


Assuntos
Flagelos/fisiologia , Polinucleotídeo Adenililtransferase/fisiologia , Cabeça do Espermatozoide/fisiologia , Espermátides/fisiologia , Espermatogênese/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Flagelos/metabolismo , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polinucleotídeo Adenililtransferase/genética , Gravidez , Cabeça do Espermatozoide/metabolismo , Espermátides/citologia , Espermatozoides/fisiologia
5.
Aging (Albany NY) ; 9(12): 2480-2488, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29283885

RESUMO

Elder women suffer from low or loss of fertility because of decreasing oocyte quality as maternal aging. As energy resource, mitochondria play pivotal roles in oocyte development, determining oocyte quality. With advanced maternal age, increased dysfunctions emerge in oocyte mitochondria, which decrease oocyte quality and its developmental potential. Mitochondria supplement as a possible strategy for improving egg quality has been in debate due to ethnic problems. Heterogeneity is an intractable problem even transfer of germinal vesicle, spindle, pronuclei or polar body is employed. We proposed that the autologous adipose tissue-derived stem cell (ADSC) mitochondria could improve the fertility in aged mice. We found that autologous ADSC mitochondria could promote oocyte quality, embryo development and fertility in aged mice, which may provide a promising strategy for treatment of low fertility or infertility in elder women.


Assuntos
Envelhecimento , Infertilidade Feminina , Células-Tronco Mesenquimais , Mitocôndrias/transplante , Oócitos , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Camundongos , Gravidez
6.
J Endocrinol ; 232(2): 155-164, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27821469

RESUMO

As a fat storage organ, adipose tissue is distributed widely all over the body and is important for energy supply, body temperature maintenance, organ protection, immune regulation and so on. In humans, both underweight and overweight women find it hard to become pregnant, which suggests that appropriate fat storage can guarantee the female reproductive capacity. In fact, a large mass of adipose tissue distributes around the reproductive system both in the male and female. However, the functions of ovary fat pad (the nearest adipose tissue to ovary) are not known. In our study, we found that the ovary fat pad-removed female mice showed decreased fertility and less ovulated mature eggs. We further identified that only a small proportion of follicles developed to antral follicle, and many follicles were blocked at the secondary follicle stage. The overall secretion levels of estrogen and FSH were lower in the whole estrus cycle (especially at proestrus); however, the LH level was higher in ovary fat pad-removed mice than that in control groups. Moreover, the estrus cycle of ovary fat pad-removed mice showed significant disorder. Besides, the expression of FSH receptor decreased, but the LH receptor increased in ovary fat pad-removed mice. These results suggest that ovary fat pad is important for mouse reproduction.


Assuntos
Tecido Adiposo/metabolismo , Estrogênios/sangue , Fertilidade/fisiologia , Folículo Ovariano/crescimento & desenvolvimento , Ovário/metabolismo , Animais , Ciclo Estral/metabolismo , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Camundongos , Folículo Ovariano/metabolismo , Ovulação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA