Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 5739-5761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882545

RESUMO

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have the capability to induce specific protein degradation. While playing a revolutionary role in effectively degrading the protein of interest (POI), PROTACs encounter certain limitations that impede their clinical translation. These limitations encompass off-target effects, inadequate cell membrane permeability, and the hook effect. The advent of nanotechnology presents a promising avenue to surmount the challenges associated with conventional PROTACs. The utilization of nano-proteolysis targeting chimeras (nano-PROTACs) holds the potential to enhance specific tissue accumulation, augment membrane permeability, and enable controlled release. Consequently, this approach has the capacity to significantly enhance the controllable degradation of target proteins. Additionally, they enable a synergistic effect by combining with other therapeutic strategies. This review comprehensively summarizes the structural basis, advantages, and limitations of PROTACs. Furthermore, it highlights the latest advancements in nanosystems engineered for delivering PROTACs, as well as the development of nano-sized PROTACs employing nanocarriers as linkers. Moreover, it delves into the underlying principles of nanotechnology tailored specifically for PROTACs, alongside the current prospects of clinical research. In conclusion, the integration of nanotechnology into PROTACs harbors vast potential in enhancing the anti-tumor treatment response and expediting clinical translation.


Assuntos
Neoplasias , Proteólise , Humanos , Neoplasias/tratamento farmacológico , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Nanopartículas/química , Nanomedicina/métodos , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
2.
Arch Biochem Biophys ; 746: 109728, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633586

RESUMO

Focal segmental glomerulosclerosis (FSGS), a podocyte disease, is the leading cause of end-stage renal disease (ESRD). Nevertheless, the current effective treatment for FSGS is deficient. Curcumin (CUR) is a principal curcuminoid of turmeric, which is a member of the ginger family. Previous studies have shown that CUR has renoprotective effects. However, the mechanism of CUR in anti-FSGS is not clear. This study aimed to explore the mechanism of CUR against FSGS through a combination of network pharmacological methods and verification of experiments. The analysis identified 98 shared targets of CUR against FSGS, and these 98 targets formed a network of protein-protein interactions (PPI). Of these 98 targets, AKT1, TNF, IL-6, VEGFA, STAT3, MAPK3, HIF1A, CASP3, IL1B, and JUN were identified as the hub targets. Molecular docking suggested that the best binding to CUR is MAPK3 and AKT1. Apoptotic process and cell proliferation were identified as the main biological processes of CUR against FSGS by gene ontology (GO) analysis. The most enriched signaling pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was the PI3K-AKT signaling pathway. Western blots and flow cytometry showed that CUR could inhibit adriamycin (ADR) induced apoptosis, oxidative stress damage, and attenuate podocyte epithelial-mesenchymal transition (EMT) by repressing the AKT signaling pathway. Collectively, our study demonstrates that CUR can attenuate apoptosis, oxidative stress damage, and EMT in FSGS in vitro. These results supply a compelling basis for future studies of CUR for the clinical treatment of FSGS.


Assuntos
Curcumina , Glomerulosclerose Segmentar e Focal , Podócitos , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Apoptose
3.
Curr Med Sci ; 42(4): 742-753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35678915

RESUMO

OBJECTIVE: T-LAK-cell-originated protein kinase (TOPK), a PSD95-Disc large-ZO1 (PDZ) binding kinase (PBK), is a novel member of the mitogen-activated protein kinase (MAPK) family. Studies have shown that TOPK plays a critical role in the function of tumor cells, including apoptosis and mitosis. However, little is known on the effect of TOPK in cisplatin-induced acute kidney injury (CP-AKI). This study aimed to investigate the role and mechanism of TOPK in CP-AKI. METHODS: Cisplatin was administered to C57BL/6 mice and cultured kidney tubular epithelial cells (TECs) to establish the CP-AKI murine or cellular models. TECs were then stimulated with the specific inhibitor of TOPK OTS514 or transfected with the recombinant-activated plasmid TOPK-T9E to inhibit or activate TOPK. The TECs were treated with AKT inhibitor VIII following stimulation with OTS514 or cisplatin. Western blotting and flow cytometry were used to evaluate the cell cycle and apoptosis of TECs. RESULTS: The analysis revealed that the TOPK activity was significantly suppressed by cisplatin, both in vivo and in vitro. Furthermore, the pharmacological inhibition of TOPK by OTS514, a specific inhibitor of TOPK, exacerbated the cisplatin-induced cell cycle arrest in the G2/M phase and apoptosis of cultured TECs. Moreover, the TOPK activation via the TOPK-T9E plasmid transfection could partially reverse the cell cycle arrest at the G2/M phase and apoptosis of cisplatin-treated TECs. In addition, AKT/protein kinase B (PKB), as a TOPK target protein, was inhibited by cisplatin in cultured TECs. The pharmaceutical inhibition of AKT further aggravated the apoptosis of TECs induced by cisplatin or TOPK inhibition. TOPK systematically mediated the apoptosis via the AKT pathway in the CP-AKI cell model. CONCLUSION: These results indicate that TOPK activation protects against CP-AKI by ameliorating the G2/M cell cycle arrest and cell apoptosis.


Assuntos
Injúria Renal Aguda , Proteínas Proto-Oncogênicas c-akt , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose , Cisplatino/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/genética
4.
Bioengineered ; 12(2): 11041-11056, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34802380

RESUMO

Cisplatin-induced acute kidney injury (CP-AKI) is a severe complication in patients receiving CP chemotherapy. However, effective therapies for CP-AKI are currently lacking. Curcumin (CUR), a natural polyphenol, is extracted from the rhizome of turmeric and has been reported to have nephroprotective activity. However, the role of CUR in CP-AKI remains unclear. This study aimed to explore the mechanism of CUR in CP-AKI by combining a network pharmacology approach with experimental validations. The analysis revealed 176 potential targets of CUR based on the HERB database and 1,286 related targets of CP-AKI from the GeneCards, DrugBank, and OMIM databases. Further, 106 common targets of CUR against CP-AKI were obtained, and these common targets constructed a protein-protein interaction (PPI) network. In addition, the core targets were screened from the PPI network using Cytoscape. Molecular docking revealed that CUR displayed the best binding to AKT1. Gene Ontology (GO) analysis indicated that the primary biological processes of CUR against CP-AKI included cellular response to chemical stress and apoptotic regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the PI3K-Akt signaling pathway was most significantly enriched in CUR against CP-AKI. Western blotting and flow cytometry showed that CUR inhibited apoptosis induced by CP by activating the Akt signaling pathway in human kidney tubular epithelial cells (HK-2). Altogether, our findings demonstrated that CUR alleviated apoptosis by activating the Akt signaling pathway in CP-AKI in vitro. These data provide a scientific basis for future investigations into the clinical application of CUR against CP-AKI.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Curcumina/uso terapêutico , Farmacologia em Rede , Substâncias Protetoras/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular , Curcumina/química , Curcumina/farmacologia , Ontologia Genética , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo , Substâncias Protetoras/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Oncol Lett ; 19(5): 3469-3476, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32269620

RESUMO

Cisplatin resistance has been a major factor limiting its clinical use as a chemotherapy drug. The present study aimed to investigate whether SET and MYND domain-containing protein 3 (SMYD3), a histone methyltransferase closely associated with tumors can affect the sensitivity of tumors to cisplatin chemotherapy. Real time-qPCR, western blotting, the luciferase reporter, MTT and clonogenic assays were performed to detect the effects of SMYD3 on the chemotherapy capacity of cisplatin. In the present study, SMYD3 exhibited different expression patterns in MCF-7 and T47D breast cancer cells. In addition, this differential expression was associated with tumor cell resistance to cisplatin. Furthermore, SMYD3 knockdown following small interfering RNA transfection increased cisplatin sensitivity, whereas SMYD3 overexpression decreased cisplatin sensitivity. In addition, SMYD3 knockdown synergistically enhanced cisplatin-induced cell apoptosis. SMYD3 expression was downregulated during cisplatin treatment. In addition, transcriptional regulatory activities of SMYD3 3'-untranslated region were also downregulated. These results suggested that SMYD3 may affect cell sensitivity to cisplatin and participate in the development of cisplatin resistance, which is a process that may involve microRNA-124-mediated regulation.

6.
Medchemcomm ; 10(10): 1740-1754, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32055299

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), an important immunoregulatory enzyme ubiquitously expressed in various tissues and cells, plays a key role in tryptophan metabolism via the kynurenine pathway and has emerged as an attractive therapeutic target for the treatment of cancer and other diseases, such as Alzheimer's disease and arthritis. IDO1 has diverse biological roles in immune suppression and tumor progression by tryptophan catabolism. In addition, IDO1-mediated immune tolerance assists tumor cells in escaping the immune surveillance. Recently, extensive and enormous investigations have been made in the discovery of IDO1 inhibitors in both academia and pharmaceutical companies. In this review, IDO1 inhibitors are grouped as tryptophan derivatives, inhibitors with an imidazole, 1,2,3-triazole or tetrazole scaffold, inhibitors with quinone or iminoquinone, N-hydroxyamidines and other derivatives, and their enzymatic inhibitory activity, selectivity and other biological activities are also introduced and summarized.

7.
Food Sci Biotechnol ; 27(4): 1165-1173, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30263847

RESUMO

Sulforaphane (SFN), a natural compound derived from cruciferous vegetables, has been proved to possess potent anti-cancer activity. SMYD3 is a histone methyltransferase which is closely related to the proliferation and migration of cancer cells. This study showed that SFN could dose-dependently induce cell cycle arrest, stimulate apoptosis, and inhibit proliferation and migration of gastric carcinoma cells. Accompanied with these anti-cancer effects, SMYD3 and its downstream genes, myosin regulatory light chain 9, and cysteine-rich angiogenic inducer 61, was downregulated by SFN. Furthermore, overexpression of SMYD3 via transfection could abolish the effects of SFN, suggesting that SMYD3 might be an important mediator of SFN. To the best of our knowledge, this is the first report describing the role of SMYD3 in the anti-cancer of SFN. These findings might throw light on the development of novel anti-cancer drugs and functional food using SFN-rich cruciferous vegetables.

8.
J Gastric Cancer ; 17(4): 295-305, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29302370

RESUMO

PURPOSE: We previously found that the histone methyltransferase suppressor of variegation, enhancer of zeste, trithorax and myeloid-nervy-deformed epidermal autoregulatory factor-1 domain-containing protein 3 (SMYD3) is a potential independent predictive factor or prognostic factor for overall survival in gastric cancer patients, but its roles seem to differ from those in other cancers. Therefore, in this study, the detailed functions of SMYD3 in cell proliferation and migration in gastric cancer were examined. MATERIALS AND METHODS: SMYD3 was overexpressed or suppressed by transfection with an expression plasmid or siRNA, and a wound healing migration assay and Transwell assay were performed to detect the migration and invasion ability of gastric cancer cells. Additionally, an MTT assay and clonogenic assay were performed to evaluate cell proliferation, and a cell cycle analysis was performed by propidium iodide staining. Furthermore, the expression of genes implicated in the ataxia telangiectasia mutated (ATM) pathway and proteins involved in cell cycle regulation were detected by polymerase chain reaction and western blot analyses. RESULTS: Compared with control cells, gastric cancer cells transfected with si-SMYD3 showed lower migration and invasion abilities (P<0.05), and the absence of SMYD3 halted cells in G2/M phase and activated the ATM pathway. Furthermore, the opposite patterns were observed when SMYD3 was elevated in normal gastric cells. CONCLUSIONS: To the best of our knowledge, this study provides the first evidence that the absence of SMYD3 could inhibit the migration, invasion, and proliferation of gastric cancer cells and halt cells in G2/M phase via the ATM-CHK2/p53-Cdc25C pathway. These findings indicated that SMYD3 plays crucial roles in the proliferation, migration, and invasion of gastric cancer cells and may be a useful therapeutic target in human gastric carcinomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA