Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Biomed Eng ; 8(5): 593-610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641710

RESUMO

Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.


Assuntos
Células Apresentadoras de Antígenos , Imunidade Inata , Peptídeos , Animais , Imunidade Inata/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Humanos , Feminino , Cátions/química , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Receptor Toll-Like 9/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/química
2.
ACS Nano ; 18(11): 8143-8156, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38436248

RESUMO

The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.


Assuntos
Artemisininas , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Nanovacinas , Alumínio , Neoplasias/tratamento farmacológico , Ferro , Hidróxidos , Imunoterapia/métodos , Microambiente Tumoral
3.
Bioact Mater ; 35: 208-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327823

RESUMO

Repair of large bone defects caused by severe trauma, non-union fractures, or tumor resection remains challenging because of limited regenerative ability. Typically, these defects heal through mixed routines, including intramembranous ossification (IMO) and endochondral ossification (ECO), with ECO considered more efficient. Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit. Herein, we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2 (rhBMP-2), aiming to induce ECO-dominated repair. Specifically, we apply a mesoporous structure to accelerate iron chelation, this promoting early chondrogenesis via deferoxamine (DFO)-induced hypoxia-inducible factor-1α (HIF-1α). Through the delicate segmentation of click-crosslinked PEGylated Poly (glycerol sebacate) (PEGS) layers, we achieve programmed release of low-dose rhBMP-2, which can facilitate cartilage-to-bone transformation while reducing side effect risks. We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance. Collectively, these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing, paving a promising pave towards its clinical use in addressing large bone defects.

4.
Mol Cancer Ther ; 23(3): 330-342, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37956421

RESUMO

Ionizing radiation is known to possess immune modulatory properties. However, how radiotherapy (RT) may complement with different types of immunotherapies to boost antitumor responses is unclear. In mice implanted with EO771 syngeneic tumors, NL-201 a stable, highly potent CD25-independent agonist to IL2 and IL15 receptors with enhanced affinity for IL2Rßγ was given with or without RT. Flow analysis and Western blot analysis was performed to determine the mechanisms involved. STING (-/-) and CD11c+ knockout mice were implanted with EO771 tumors to confirm the essential signaling and cell types required to mediate the effects seen. Combination of RT and NL-201 to enhance systemic immunotherapy with an anti-PD-1 checkpoint inhibitor was utilized to determine tumor growth inhibition and survival, along characterization of tumor microenvironment as compared with all other treatment groups. Here, we showed that RT, synergizing with NL-201 produced enhanced antitumor immune responses in murine breast cancer models. When given together, RT and NL-201 enhanced activation of the cytosolic DNA sensor cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway, resulting in increased type I IFN production in dendritic cells (DC), and consequently greater tumor infiltration and more efficient priming of antigen-specific T cells. The immune stimulatory mechanisms triggered by NL-201 and RT resulted in superior tumor growth inhibition and survival benefit in both localized and metastatic cancers. Our results support further preclinical and clinical investigation of this novel synergism regimen in locally advanced and metastatic settings.


Assuntos
Interleucina-15 , Neoplasias , Animais , Camundongos , Interleucina-2 , Neoplasias/radioterapia , Linfócitos T , Imunidade Inata , Microambiente Tumoral
5.
Nat Nanotechnol ; 19(2): 255-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37723279

RESUMO

Nanomedicines have been approved to treat multiple human diseases. However, clinical adoption of nanoformulated agents is often hindered by concerns about hepatic uptake and clearance, a process that is not fully understood. Here we show that the antitumour efficacy of cancer nanomedicine exhibits an age-associated disparity. Tumour delivery and treatment outcomes are superior in old versus young mice, probably due to an age-related decline in the ability of hepatic phagocytes to take up and remove nanoparticles. Transcriptomic- and protein-level analysis at the single-cell and bulk levels reveals an age-associated decrease in the numbers of hepatic macrophages that express the scavenger receptor MARCO in mice, non-human primates and humans. Therapeutic blockade of MARCO is shown to decrease the phagocytic uptake of nanoparticles and improve the antitumour effect of clinically approved cancer nanotherapeutics in young but not aged mice. Together, these results reveal an age-associated disparity in the phagocytic clearance of nanotherapeutics that affects their antitumour response, thus providing a strong rationale for an age-appropriate approach to cancer nanomedicine.


Assuntos
Nanopartículas , Neoplasias , Humanos , Camundongos , Animais , Neoplasias/terapia , Fagócitos/patologia , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Cinética
6.
Nat Commun ; 14(1): 6610, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857647

RESUMO

The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs). This is achieved by using a microfluidic electroporation approach in which a combination of nano- and milli-second pulses produces large amounts of IFN-γ mRNA-loaded sEVs with CD64 overexpressed on their surface. The CD64 molecule serves as an adaptor to dock targeting ligands, such as anti-CD71 and anti-programmed cell death-ligand 1 (PD-L1) antibodies. The resulting immunogenic sEVs (imsEV) preferentially target glioblastoma cells and generate potent antitumour activities in vivo, including against tumours intrinsically resistant to immunotherapy. Together, these results provide an adaptive approach to engineering mRNA-loaded sEVs with targeting functionality and pave the way for their adoption in cancer immunotherapy applications.


Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , RNA Mensageiro/genética , Imunoterapia/métodos , Vesículas Extracelulares/genética , Eletroporação
8.
Trends Cancer ; 9(8): 650-665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150626

RESUMO

Many patients with metastatic or treatment-resistant cancer have experienced improved outcomes after immunotherapy that targets adaptive immune checkpoints. However, innate immune checkpoints, which can hinder the detection and clearance of malignant cells, are also crucial in tumor-mediated immune escape and may also serve as targets in cancer immunotherapy. In this review, we discuss the current understanding of immune evasion by cancer cells via disruption of phagocytic clearance, and the potential effects of blocking phagocytosis checkpoints on the activation of antitumor immune responses. We propose that a more effective combination immunotherapy strategy could be to exploit tumor-intrinsic processes that inhibit key innate immune surveillance processes, such as phagocytosis, and incorporate both innate and adaptive immune responses for treating patients with cancer.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Fagocitose , Neoplasias/patologia , Imunoterapia
9.
Nat Nanotechnol ; 17(12): 1332-1341, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357792

RESUMO

Solid tumours display a limited response to immunotherapies. By contrast, haematological malignancies exhibit significantly higher response rates to immunotherapies as compared with solid tumours. Among several microenvironmental and biological disparities, the differential expression of unique immune regulatory molecules contributes significantly to the interaction of blood cancer cells with immune cells. The self-ligand receptor of the signalling lymphocytic activation molecule family member 7 (SLAMF7), a molecule that is critical in promoting the body's innate immune cells to detect and engulf cancer cells, is expressed nearly exclusively on the cell surface of haematologic tumours, but not on solid ones. Here we show that a bispecific nanobioconjugate that enables the decoration of SLAMF7 on the surface of solid tumours induces robust phagocytosis and activates the phagocyte cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway, sensitizing the tumours to immune checkpoint blockade. Our findings support an immunological conversion strategy that uses nano-adjuvants to improve the effectiveness of immunotherapies for solid tumours.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Proteínas de Membrana/metabolismo , Imunoterapia , Fagocitose
11.
Small ; 18(16): e2107690, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277914

RESUMO

Triple-negative breast cancer (TNBC) is the most lethal subtypes of breast cancer. Although chemotherapy is considered the most effective strategy for TNBC, most chemotherapeutics in current use are cytotoxic, meaning they target antiproliferative activity but do not inhibit tumor cell metastasis. Here, a TNBC-specific targeted liposomal formulation of epalrestat (EPS) and doxorubicin (DOX) with synergistic effects on both tumor cell proliferation and metastasis is described. These liposomes are biocompatible and effectively target tumor cells owing to hyaluronic acid (HA) modification on their surface. This active targeting, mediated by CD44-HA interaction, allows DOX and EPS to be delivered simultaneously to tumor cells in vivo, where they suppress not only TNBC tumor growth and the epithelial-mesenchymal transition, but also cancer stem cells, which collectively suppress tumor growth and metastasis of TNBC and may also act to prevent relapse of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Ácido Hialurônico , Lipossomos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
12.
Int J Pharm ; 607: 121034, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34425193

RESUMO

Our previous studies have proven that carnosic acid (CA) induces apoptosis of liver cancer cells. However, the poor chemical properties of CA limit its in vivo anti-cancer effects. In this study, CA was loaded into liposomes (LP-CA), and LP-CA was further conjugated with transferrin (Tf-LP-CA) to overcome the shortcomings of poor solubility and absorption at the lesion site. In HepG2 and SMMC-7721 cells, compared with CA and LP-CA, more Tf-LP-CA was absorbed by liver cancer cells, which induced higher levels of apoptosis and reduced the mitochondrial membrane potential more effectively. In HepG2- and SMMC-7721-xenotransplanted mice, Tf-LP-CA inhibited tumor growth with no cytotoxicity to the liver, spleen, or kidney. Furthermore, compared with CA and LP-CA, Tf-LP-CA targeted the tumor site more effectively, enhanced the expressions of cleaved poly(ADP-ribose) polymerase, and Caspase-3 and -9, and regulated the expression levels of B-cell lymphoma 2 (Bcl2) family members in the tumor tissues. Tf-LP-CA was taken up by tumor cells and targeted at tumor tissues, ensuring the precise delivery of CA, which further promoted mitochondria-mediated intrinsic apoptosis in the liver cancer cells. These results provide evidence for the clinical application of the Tf-LP-based CA drug delivery system for liver cancer.


Assuntos
Lipossomos , Neoplasias Hepáticas , Abietanos , Animais , Apoptose , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Mitocôndrias , Transferrina
13.
Front Pharmacol ; 12: 695957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305606

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease that causes high rates of disability and mortality worldwide because of severe progressive and irreversible symptoms. During the period of COPD initiation and progression, the immune system triggers the activation of various immune cells, including Regulatory T cells (Tregs), dendritic cells (DCs) and Th17 cells, and also the release of many different cytokines and chemokines, such as IL-17A and TGF-ß. In recent years, studies have focused on the role of IL-17A in chronic inflammation process, which was found to play a highly critical role in facilitating COPD. Specially, IL-17A and its downstream regulators are potential therapeutic targets for COPD. We mainly focused on the possibility of IL-17A signaling pathways that involved in the progression of COPD; for instance, how IL-17A promotes airway remodeling in COPD? How IL-17A facilitates neutrophil inflammation in COPD? How IL-17A induces the expression of TSLP to promote the progression of COPD? Whether the mature DCs and Tregs participate in this process and how they cooperate with IL-17A to accelerate the development of COPD? And above associated studies could benefit clinical application of therapeutic targets of the disease. Moreover, four novel efficient therapies targeting IL-17A and other molecules for COPD are also concluded, such as Bufei Yishen formula (BYF), a Traditional Chinese Medicine (TCM), and curcumin, a natural polyphenol extracted from the root of Curcuma longa.

14.
Curr Med Chem ; 28(31): 6375-6394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33441061

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurological disorders that can severely affect the ability to perform daily activities. The clinical presentation of PD includes motor and nonmotor symptoms. The motor symptoms generally involve movement conditions like tremors, rigidity, slowness, and impaired balance. In contrast, the nonmotor symptoms are often not apparent but can affect various organ systems, such as the urinary and gastrointestinal systems, and mental health. Gene mutations and toxic environmental factors have contributed significantly to PD; nevertheless, its cause and underlying mechanism remain unknown. Currently, treatments such as dopamine agonists, RNA molecules, and antioxidants can, to some extent, alleviate the motor symptoms triggered by PD. However, these medicines cannot effectively halt ongoing dopaminergic damage, mainly because the blood-brain barrier (BBB) lowers the efficiency of drug delivery. Recently, extracellular vesicles (EVs), a novel drug delivery platform, have been widely used in various neurological diseases, including stroke and brain tumors, because of their excellent biocompatibility, their ability to penetrate the BBB without toxicity, and their target specificity. EVs thus provide a promising therapeutic for treating PD. OBJECTIVE: This review focuses on novel therapies based on EVs in practice. Herein, we briefly introduce the biogenesis, composition, isolation, and characterization of EVs, and we discuss strategies for loading therapeutic agents onto EVs and recent applications for PD treatment. Moreover, we discuss perspectives on the direction of preclinical and clinical studies regarding novel and effective therapies. METHODS: A literature search regarding PD treatment based on extracellular vesicles was performed in PubMed (updated in June 2020). Treatment, therapy, drug delivery, extracellular vesicles, and their combinations were the search queries. Both systematic reviews and original publications were included. Searched results were selected and compared based on relevance. Articles published in the last five years were given top priority. CONCLUSION: PD is a heterogeneous disease that can be treated by using pharmacologic approaches (e.g. dopamine agonists and levodopa) and nonpharmacologic approaches (e.g. music), based on symptoms and progression level in patients. Even though current treatments have demonstrated effectiveness, clinical challenges remain because the BBB reduces the medication received and lowers the efficacy of drug delivery, which impairs the treatment's effect. Therefore, EVs, as an emerging delivery platform, are highly promising for PD treatment since they can readily cross the BBB with high therapeutic efficiency through the loading or functionalization process. However, defining a safe source of EVs, reliably purifying and isolating EVs with high yield, and improving the efficacy of therapeutic loading in EVs remain challenging in this field. Therefore, future investigations should focus on generating large-scale exosomal carriers and designing new effective drugs encapsulated in EVs for better efficacy.


Assuntos
Vesículas Extracelulares , Doença de Parkinson , Barreira Hematoencefálica , Dopamina , Sistemas de Liberação de Medicamentos , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico
15.
Biomed Res Int ; 2020: 5491963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083472

RESUMO

The identification of profiled cancer-related genes plays an essential role in cancer diagnosis and treatment. Based on literature research, the classification of genetic mutations continues to be done manually nowadays. Manual classification of genetic mutations is pathologist-dependent, subjective, and time-consuming. To improve the accuracy of clinical interpretation, scientists have proposed computational-based approaches for automatic analysis of mutations with the advent of next-generation sequencing technologies. Nevertheless, some challenges, such as multiple classifications, the complexity of texts, redundant descriptions, and inconsistent interpretation, have limited the development of algorithms. To overcome these difficulties, we have adapted a deep learning method named Bidirectional Encoder Representations from Transformers (BERT) to classify genetic mutations based on text evidence from an annotated database. During the training, three challenging features such as the extreme length of texts, biased data presentation, and high repeatability were addressed. Finally, the BERT+abstract demonstrates satisfactory results with 0.80 logarithmic loss, 0.6837 recall, and 0.705 F-measure. It is feasible for BERT to classify the genomic mutation text within literature-based datasets. Consequently, BERT is a practical tool for facilitating and significantly speeding up cancer research towards tumor progression, diagnosis, and the design of more precise and effective treatments.


Assuntos
Algoritmos , Biologia Computacional/métodos , Aprendizado Profundo , Genes Neoplásicos/genética , Neoplasias/genética , Pesquisa Biomédica , Curadoria de Dados , Humanos
16.
Nanoscale ; 12(32): 16928-16933, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32776029

RESUMO

Cabazitaxel (CTX) is a promising anticancer drug. In this study, CTX-loaded human serum albumin (HSA) nanoparticles (MF-NPs-CTX) were prepared by a microfluidic (MF) method and were evaluated for tumor inhibition in PC-3 and HeLa cells in vitro and in vivo. The in vitro experiments showed that MF-NPs-CTX had higher drug loading content (DLC) as compared with NPs prepared by the bottom-up (BU) method (BU-NPs-CTX). Besides, MF-NPs-CTX exhibited uniform particle size distribution, high stability, sustained drug release, and high biosafety, in vivo imaging studies demonstrated that MF-NPs-CTX accumulated preferentially at the tumor site, compared to BU-NPs-CTX. The enhanced tumor uptake also increased the therapeutic efficacy of MF-NPs-CTX. Both MF-NPs-CTX and tween-CTX exhibited good tumor inhibition effect in vivo. MF-NPs-CTX had better biosafety and biocompatibility than tween-CTX. These results demonstrated that high CTX loading of MF-NPs-CTX has potential in the clinical treatment of tumors.


Assuntos
Portadores de Fármacos , Nanopartículas , Linhagem Celular Tumoral , Células HeLa , Humanos , Microfluídica , Tamanho da Partícula , Taxoides
17.
Dose Response ; 18(3): 1559325820936161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32699536

RESUMO

Chemotherapy is widely used to treat cancer. The toxic effect of conventional chemotherapeutic drugs on healthy cells leads to serious toxic and side effects of conventional chemotherapy. The application of nanotechnology in tumor chemotherapy can increase the specificity of anticancer agents, increase the killing effect of tumors, and reduce toxic and side effects. Currently, a variety of formulations based on nanoparticles (NPs) for delivering chemotherapeutic drugs have been put into clinical use, and several others are in the stage of development or clinical trials. In this review, after briefly introducing current cancer chemotherapeutic methods and their limitations, we describe the clinical applications and advantages and disadvantages of several different types of NPs-based chemotherapeutic agents. We have summarized a lot of information in tables and figures related to the delivery of chemotherapeutic drugs based on NPs and the design of NPs with active targeting capabilities.

18.
Front Pharmacol ; 11: 697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508641

RESUMO

Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that have been predominantly used in basic and preclinical research during the last 30 years. Since they are not only capable of translocating themselves into cells but also facilitate drug or CPP/cargo complexes to translocate across the plasma membrane, they have potential applications in the disease diagnosis and therapy, including cancer, inflammation, central nervous system disorders, otologic and ocular disorders, and diabetes. However, no CPPs or CPP/cargo complexes have been approved by the US Food and Drug Administration (FDA). Many issues should be addressed before translating CPPs into clinics. In this review, we summarize recent developments and innovations in preclinical studies and clinical trials based on using CPP for improved delivery, which have revealed that CPPs or CPP-based delivery systems present outstanding diagnostic therapeutic delivery potential.

19.
Polymers (Basel) ; 12(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429363

RESUMO

Injectable hydrogels have been widely applied in the field of regenerative medicine. However, current techniques for injectable hydrogels are facing a challenge when trying to generate a biomimetic, porous architecture that is well-acknowledged to facilitate cell behaviors. In this study, an injectable, interconnected, porous hyaluronic acid (HA) hydrogel based on an in-situ bubble self-generation and entrapment process was developed. Through an amide reaction between HA and cystamine dihydrochloride activated by EDC/NHS, CO2 bubbles were generated and were subsequently entrapped inside the substrate due to a rapid gelation-induced retention effect. HA hydrogels with different molecular weights and concentrations were prepared and the effects of the hydrogel precursor solution's concentration and viscosity on the properties of hydrogels were investigated. The results showed that HA10-10 (10 wt.%, MW 100,000 Da) and HA20-2.5 (2.5 wt.%, MW 200,000 Da) exhibited desirable gelation and obvious porous structure. Moreover, HA10-10 represented a high elastic modulus (32 kPa). According to the further in vitro and in vivo studies, all the hydrogels prepared in this study show favorable biocompatibility for desirable cell behaviors and mild host response. Overall, such an in-situ hydrogel with a self-forming bubble and entrapment strategy is believed to provide a robust and versatile platform to engineer injectable hydrogels for a variety of applications in tissue engineering, regenerative medicine, and personalized therapeutics.

20.
Front Oncol ; 10: 606906, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33628730

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane particles that represent an endogenous mechanism for cell-to-cell communication. Since discovering that EVs have multiple advantages over currently available delivery platforms, such as their ability to overcome natural barriers, intrinsic cell targeting properties, and circulation stability, the potential use of EVs as therapeutic nanoplatforms for cancer studies has attracted considerable interest. To fully elucidate EVs' therapeutic function for treating cancer, all current knowledge about cellular uptake and trafficking of EVs will be initially reviewed. In order to further improve EVs as anticancer therapeutics, engineering strategies for cancer therapy have been widely explored in the last decade, along with other cancer therapies. However, therapeutic applications of EVs as drug delivery systems have been limited because of immunological concerns, lack of methods to scale EV production, and efficient drug loading. We will review and discuss recent progress and remaining challenges in developing EVs as a delivery nanoplatform for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA