Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(5)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269509

RESUMO

SLC17A9 (solute carrier family 17 member 9) functions as an ATP transporter in lysosomes as well as other secretory vesicles. SLC17A9 inhibition or silence leads to cell death. However, the molecular mechanisms causing cell death are unclear. In this study, we report that cell death induced by SLC17A9 deficiency is rescued by the transcription factor EB (TFEB), a master gene for lysosomal protein expression, suggesting that SLC17A9 deficiency may be the main cause of lysosome dysfunction, subsequently leading to cell death. Interestingly, Cathepsin D, a lysosomal aspartic protease, is inhibited by SLC17A9 deficiency. Heterologous expression of Cathepsin D successfully rescues lysosomal dysfunction and cell death induced by SLC17A9 deficiency. On the other hand, the activity of Cathepsin B, a lysosomal cysteine protease, is not altered by SLC17A9 deficiency, and Cathepsin B overexpression does not rescue lysosomal dysfunction and cell death induced by SLC17A9 deficiency. Our data suggest that lysosomal ATP and SLC17A9 play critical roles in lysosomal function and cell viability by regulating Cathepsin D activity.


Assuntos
Proteínas de Transporte de Nucleotídeos , Trifosfato de Adenosina/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Sobrevivência Celular , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Nucleotídeos/genética
2.
Cancers (Basel) ; 13(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803964

RESUMO

Ca2+ is pivotal intracellular messenger that coordinates multiple cell functions such as fertilization, growth, differentiation, and viability. Intracellular Ca2+ signaling is regulated by both extracellular Ca2+ entry and Ca2+ release from intracellular stores. Apart from working as the cellular recycling center, the lysosome has been increasingly recognized as a significant intracellular Ca2+ store that provides Ca2+ to regulate many cellular processes. The lysosome also talks to other organelles by releasing and taking up Ca2+. In lysosomal Ca2+-dependent processes, autophagy is particularly important, because it has been implicated in many human diseases including cancer. This review will discuss the major components of lysosomal Ca2+ stores and their roles in autophagy and human cancer progression.

3.
Biomolecules ; 11(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419007

RESUMO

Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Neoplasias/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Autofagia/genética , Humanos , Imunidade/genética , Neoplasias/genética , Neoplasias/imunologia
4.
Sci Rep ; 10(1): 1038, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974459

RESUMO

Macrophages are highly specialized in removing large particles including dead cells and cellular debris. When stimulated, delivery of the intracellular lysosomal membranes is required for the formation of plasmalemmal pseudopods and phagosomes. As a key lysosomal Ca2+ channel, Transient Receptor Potential Mucolipin-1 (TRPML1) regulates lysosomal exocytosis and subsequent phagosome biogenesis, thereby promoting phagocytosis of large extracellular particles. Recently, we have suggested that TRPML1-mediated lysosomal exocytosis is essentially dependent on lysosomal big conductance Ca2+-activated potassium (BK) channel. Therefore, we predict that lysosomal BK channels regulate large particle phagocytosis. In this study, by using RAW264.7 macrophage cell line and bone marrow-derived macrophages, we show that although BK is dispensable for small particle uptake, loss of BK significantly inhibits the ingestion of large particles whereas activating BK increases the uptake of large particles. BK facilitating effect on large particle ingestion is inhibited by either blocking TRPML1 or suppressing lysosomal exocytosis. Additionally, the increased uptake of large particles by activating TRPML1 is eliminated by inhibiting BK. These data suggest that BK and TRPML1 are functionally coupled to regulate large particle phagocytosis through modulating lysosomal exocytosis.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Microesferas , Células RAW 264.7 , Sinaptotagminas/metabolismo , Canais de Potencial de Receptor Transitório/genética
5.
Cell Calcium ; 79: 80-88, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30889511

RESUMO

The triple-negative breast cancer (TNBC) that comprises approximately 10%-20% of breast cancers is an aggressive subtype lacking effective therapeutics. Among various signaling pathways, mTORC1 and purinergic signals have emerged as potentially fruitful targets for clinical therapy of TNBC. Unfortunately, drugs targeting these signaling pathways do not successfully inhibit the progression of TNBC, partially due to the fact that these signaling pathways are essential for the function of all types of cells. In this study, we report that TRPML1 is specifically upregulated in TNBCs and that its genetic downregulation and pharmacological inhibition suppress the growth of TNBC. Mechanistically, we demonstrate that TRPML1 regulates TNBC development, at least partially, through controlling mTORC1 activity and the release of lysosomal ATP. Because TRPML1 is specifically activated by cellular stresses found in tumor microenvironments, antagonists of TRPML1 could represent anticancer drugs with enhanced specificity and potency. Our findings are expected to have a major impact on drug targeting of TNBCs.


Assuntos
Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Canais de Potencial de Receptor Transitório/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Cálcio/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Canais de Potencial de Receptor Transitório/deficiência , Neoplasias de Mama Triplo Negativas/patologia
6.
Biochem Cell Biol ; 97(1): 58-67, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29768134

RESUMO

The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that senses and integrates environmental information into cellular regulation and homeostasis. Accumulating evidence has suggested a master role of mTOR signalling in many fundamental aspects of cell biology and organismal development. mTOR deregulation is implicated in a broad range of pathological conditions, including diabetes, cancer, neurodegenerative diseases, myopathies, inflammatory, infectious, and autoimmune conditions. Here, we review recent advances in our knowledge of mTOR signalling in mammalian physiology. We also discuss the impact of mTOR alteration in human diseases and how targeting mTOR function can treat human diseases.


Assuntos
Homeostase , Complexos Multiproteicos/metabolismo , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos
7.
Sci Rep ; 7(1): 5454, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710382

RESUMO

Gliomas, a common type of brain tumor, are characterized by aggressive infiltration, making it difficultly to cure by surgery. Netrin-1, an extracellular guidance cue critical for neuronal axon path-finding, has been reported to play an important role in cell invasion and migration in several types of cancers. However, the role of netrin-1 in glioma remains largely unknown. Here, we provide evidence suggested that Netrin-1 has a critical role in glioma growth. We found that netrin-1 was significantly increased in glioma samples and positively correlated with cell proliferation, tumor grade and malignancy. Netrin-1 knockdown reduced cell proliferation and attenuated tumor growth in a xenograft mouse model. Further studies found that netrin-1 induced NF-κB p65ser536 phosphorylation and c-Myc expression in vitro and in vivo. Interestingly, activation of NF-κB by netrin-1 was dependent on UNC5A receptor, because suppression of UNC5A significantly inhibited NF-κB p65ser536 phosphorylation, c-Myc up-regulation and reduced cell proliferation. Taken together, these results suggested netrin-1 promotes glioma cell proliferation by activating NF-κB signaling via UNC5A, netrin-1 may be a potential therapeutic target for the treatment of glioma.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , NF-kappa B/genética , Netrina-1/genética , Receptores de Superfície Celular/genética , Adulto , Idoso , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Gradação de Tumores , Receptores de Netrina , Netrina-1/antagonistas & inibidores , Netrina-1/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biol Chem ; 292(8): 3445-3455, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28087698

RESUMO

Impaired adenosine homeostasis has been associated with numerous human diseases. Lysosomes are referred to as the cellular recycling centers that generate adenosine by breaking down nucleic acids or ATP. Recent studies have suggested that lysosomal adenosine overload causes lysosome defects that phenocopy patients with mutations in transient receptor potential channel mucolipin-1 (TRPML1), a lysosomal Ca2+ channel, suggesting that lysosomal adenosine overload may impair TRPML1 and then lead to subsequent lysosomal dysfunction. In this study, we demonstrate that lysosomal adenosine is elevated by deleting adenosine deaminase (ADA), an enzyme responsible for adenosine degradation. We also show that lysosomal adenosine accumulation inhibits TRPML1, which is rescued by overexpressing ENT3, the adenosine transporter situated in the lysosome membrane. Moreover, ADA deficiency results in lysosome enlargement, alkalinization, and dysfunction. These are rescued by activating TRPML1. Importantly, ADA-deficient B-lymphocytes are more vulnerable to oxidative stress, and this was rescued by TRPML1 activation. Our data suggest that lysosomal adenosine accumulation impairs lysosome function by inhibiting TRPML1 and subsequently leads to cell death in B-lymphocytes. Activating TRPML1 could be a new therapeutic strategy for those diseases.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina/metabolismo , Linfócitos/patologia , Lisossomos/metabolismo , Imunodeficiência Combinada Severa/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Adenosina Desaminase/genética , Cálcio/metabolismo , Linhagem Celular , Deleção de Genes , Células HEK293 , Humanos , Linfócitos/metabolismo , Lisossomos/genética , Lisossomos/patologia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia
9.
Cell Calcium ; 64: 20-28, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27986285

RESUMO

Lysosomes and lysosome-related organelles are emerging as intracellular Ca2+ stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca2+ homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca2+ signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca2+ signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca2+ and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca2+ signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Lisossomos/metabolismo , Animais , Sinalização do Cálcio , Doença , Humanos , Modelos Biológicos
10.
J Physiol ; 594(15): 4253-66, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477609

RESUMO

KEY POINTS: SLC17A9 proteins function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation. P2X4 receptors act as lysosomal ion channels activated by luminal ATP. SLC17A9-mediated ATP transport across the lysosomal membrane is suppressed by Bafilomycin A1, the V-ATPase inhibitor. SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V-ATPase as the driving force to transport ATP into the lysosome to activate P2X4. ABSTRACT: The lysosome contains abundant ATP which plays important roles in lysosome functions and in cell signalling. Recently, solute carrier family 17 member 9 (SLC17A9, also known as VNUT for vesicular nucleotide transporter) proteins were suggested to function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation, and P2X4 receptors were suggested to be lysosomal ion channels that are activated by luminal ATP. However, the molecular mechanism of SLC17A9 transporting ATP and the regulatory mechanism of lysosomal P2X4 are largely unknown. In this study, we report that SLC17A9-mediated ATP transport across lysosomal membranes is suppressed by Bafilomycin A1, the V-ATPase inhibitor. By measuring P2X4 activity, which is indicative of ATP transport across lysosomal membranes, we further demonstrated that SLC17A9 mainly uses voltage gradient but not pH gradient as the driving force to transport ATP into lysosomes. This study provides a molecular mechanism for lysosomal ATP transport mediated by SLC17A9. It also suggests a regulatory mechanism of lysosomal P2X4 by SLC17A9.


Assuntos
Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/fisiologia , Lisossomos/fisiologia , Proteínas de Transporte de Nucleotídeos/fisiologia , Receptores Purinérgicos P2X4/fisiologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Camundongos , Proteínas de Transporte de Nucleotídeos/genética
11.
J Cell Biol ; 209(6): 879-94, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26101220

RESUMO

Intra-endolysosomal Ca(2+) release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca(2+) release and the downstream Ca(2+) targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca(2+)-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca(2+) release and subsequent CaM activation.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Lisossomos/metabolismo , Fusão de Membrana/fisiologia , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Células COS , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Receptores Purinérgicos P2X4/biossíntese , Receptores Purinérgicos P2X4/genética
12.
J Biol Chem ; 289(33): 23189-23199, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24962569

RESUMO

Lysosomes contain abundant ATP, which is released through lysosomal exocytosis following exposure to various stimuli. However, the molecular mechanisms underlying lysosomal ATP accumulation remain unknown. The vesicular nucleotide transporter, also known as solute carrier family 17 member 9 (SLC17A9), has been shown to function in ATP transport across secretory vesicles/granules membrane in adrenal chromaffin cells, T cells, and pancreatic cells. Here, using mammalian cell lines, we report that SLC17A9 is highly enriched in lysosomes and functions as an ATP transporter in those organelles. SLC17A9 deficiency reduced lysosome ATP accumulation and compromised lysosome function, resulting in cell death. Our data suggest that SLC17A9 activity mediates lysosomal ATP accumulation and plays an important role in lysosomal physiology and cell viability.


Assuntos
Trifosfato de Adenosina/metabolismo , Lisossomos/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Trifosfato de Adenosina/genética , Animais , Transporte Biológico Ativo/fisiologia , Células COS , Morte Celular , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Células Cromafins/citologia , Células Cromafins/metabolismo , Células HEK293 , Humanos , Lisossomos/genética , Proteínas de Transporte de Nucleotídeos/genética , Pâncreas/citologia , Pâncreas/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
13.
J Biol Chem ; 289(25): 17658-67, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24817123

RESUMO

P2X receptors are commonly known as plasma membrane cation channels involved in a wide variety of cell functions. The properties of these channels have been extensively studied on the plasma membrane. However, studies in amoeba suggest that P2X receptors are also present intracellularly and involved in vesicle fusion with the plasma membrane. Recently, it was shown that in addition to plasma membrane expression, mammalian P2X4 was also localized intracellularly in lysosomes. However, it was not clear whether the lysosomal P2X4 receptors function as channels and how they are activated and regulated. In this paper, we show that both P2X4 and its natural ligand, ATP, are enriched in lysosomes of COS1 and HEK293 cells. By directly recording membrane currents from enlarged lysosomal vacuoles, we demonstrated that lysosomal P2X4 formed channels activated by ATP from the luminal side in a pH-dependent manner. While the acidic pH at the luminal side inhibited P2X4 activity, increasing the luminal pH in the presence of ATP caused P2X4 activation. We further showed that, as for the plasma membrane P2X4, the lysosomal P2X4 was potentiated by ivermectin but insensitive to suramin and PPADS, and it permeated the large cation N-methyl-d-glucamine upon activation. Our data suggest that P2X4 forms functional ATP-activated cation channels on lysosomal membranes regulated by luminal pH. Together with the reported fusion effect of intracellular P2X in lower organisms, we speculate that the lysosome-localized P2X4 may play specific roles in membrane trafficking of acidic organelles in mammalian cells.


Assuntos
Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Antinematódeos/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Células COS , Chlorocebus aethiops , Glutamatos/farmacologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/genética , Inibidores da Agregação Plaquetária/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Ratos , Receptores Purinérgicos P2X4/genética , Suramina/farmacologia
14.
Cell ; 151(2): 372-83, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063126

RESUMO

Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles.


Assuntos
Canais de Cálcio/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Linhagem Celular , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , NADP/análogos & derivados , NADP/metabolismo , Canais de Sódio/metabolismo
15.
Nat Commun ; 3: 731, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22415822

RESUMO

Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.


Assuntos
Cálcio/metabolismo , Lisossomos/metabolismo , Doenças de Niemann-Pick/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Células COS , Chlorocebus aethiops , Colesterol/metabolismo , Cricetinae , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Técnicas de Patch-Clamp , Ftalimidas/farmacologia , Transporte Proteico , Quinolinas/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores
16.
Nat Commun ; 1: 38, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20802798

RESUMO

Membrane fusion and fission events in intracellular trafficking are controlled by both intraluminal Ca(2+) release and phosphoinositide (PIP) signalling. However, the molecular identities of the Ca(2+) release channels and the target proteins of PIPs are elusive. In this paper, by direct patch-clamping of the endolysosomal membrane, we report that PI(3,5)P(2), an endolysosome-specific PIP, binds and activates endolysosome-localized mucolipin transient receptor potential (TRPML) channels with specificity and potency. Both PI(3,5)P(2)-deficient cells and cells that lack TRPML1 exhibited enlarged endolysosomes/vacuoles and trafficking defects in the late endocytic pathway. We find that the enlarged vacuole phenotype observed in PI(3,5)P(2)-deficient mouse fibroblasts is suppressed by overexpression of TRPML1. Notably, this PI(3,5)P(2)-dependent regulation of TRPML1 is evolutionarily conserved. In budding yeast, hyperosmotic stress induces Ca(2+) release from the vacuole. In this study, we show that this release requires both PI(3,5)P(2) production and a yeast functional TRPML homologue. We propose that TRPMLs regulate membrane trafficking by transducing information regarding PI(3,5)P(2) levels into changes in juxtaorganellar Ca(2+), thereby triggering membrane fusion/fission events.


Assuntos
Membrana Celular/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Transporte Biológico , Eletrofisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana , Camundongos , Ligação Proteica , Canais de Potencial de Receptor Transitório
17.
Cell ; 141(2): 331-43, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20403327

RESUMO

A plethora of growth factors regulate keratinocyte proliferation and differentiation that control hair morphogenesis and skin barrier formation. Wavy hair phenotypes in mice result from naturally occurring loss-of-function mutations in the genes for TGF-alpha and EGFR. Conversely, excessive activities of TGF-alpha/EGFR result in hairless phenotypes and skin cancers. Unexpectedly, we found that mice lacking the Trpv3 gene also exhibit wavy hair coat and curly whiskers. Here we show that keratinocyte TRPV3, a member of the transient receptor potential (TRP) family of Ca(2+)-permeant channels, forms a signaling complex with TGF-alpha/EGFR. Activation of EGFR leads to increased TRPV3 channel activity, which in turn stimulates TGF-alpha release. TRPV3 is also required for the formation of the skin barrier by regulating the activities of transglutaminases, a family of Ca(2+)-dependent crosslinking enzymes essential for keratinocyte cornification. Our results show that a TRP channel plays a role in regulating growth factor signaling by direct complex formation.


Assuntos
Receptores ErbB/metabolismo , Cabelo/crescimento & desenvolvimento , Transdução de Sinais , Pele/crescimento & desenvolvimento , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Cabelo/metabolismo , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Knockout , Pele/metabolismo , Canais de Cátion TRPV/genética , Fator de Crescimento Transformador alfa/metabolismo
18.
Future Med Chem ; 2(1): 51-64, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20161623

RESUMO

Trace metals such as iron, copper, zinc, manganese, and cobalt are essential cofactors for many cellular enzymes. Extensive research on iron, the most abundant transition metal in biology, has contributed to an increased understanding of the molecular machinery involved in maintaining its homeostasis in mammalian peripheral tissues. However, the cellular and intercellular iron transport mechanisms in the central nervous system (CNS) are still poorly understood. Accumulating evidence suggests that impaired iron metabolism is an initial cause of neurodegeneration, and several common genetic and sporadic neurodegenerative disorders have been proposed to be associated with dysregulated CNS iron homeostasis. This review aims to provide a summary of the molecular mechanisms of brain iron transport. Our discussion is focused on iron transport across endothelial cells of the blood-brain barrier and within the neuro- and glial-vascular units of the brain, with the aim of revealing novel therapeutic targets for neurodegenerative and CNS disorders.


Assuntos
Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/patologia , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/fisiopatologia , Doenças do Sistema Nervoso Central/terapia , Homeostase , Humanos , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/terapia , Neuroglia/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Oligoelementos/metabolismo
19.
Nature ; 455(7215): 992-6, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18794901

RESUMO

TRPML1 (mucolipin 1, also known as MCOLN1) is predicted to be an intracellular late endosomal and lysosomal ion channel protein that belongs to the mucolipin subfamily of transient receptor potential (TRP) proteins. Mutations in the human TRPML1 gene cause mucolipidosis type IV disease (ML4). ML4 patients have motor impairment, mental retardation, retinal degeneration and iron-deficiency anaemia. Because aberrant iron metabolism may cause neural and retinal degeneration, it may be a primary cause of ML4 phenotypes. In most mammalian cells, release of iron from endosomes and lysosomes after iron uptake by endocytosis of Fe(3+)-bound transferrin receptors, or after lysosomal degradation of ferritin-iron complexes and autophagic ingestion of iron-containing macromolecules, is the chief source of cellular iron. The divalent metal transporter protein DMT1 (also known as SLC11A2) is the only endosomal Fe(2+) transporter known at present and it is highly expressed in erythroid precursors. Genetic studies, however, suggest the existence of a DMT1-independent endosomal and lysosomal Fe(2+) transport protein. By measuring radiolabelled iron uptake, by monitoring the levels of cytosolic and intralysosomal iron and by directly patch-clamping the late endosomal and lysosomal membrane, here we show that TRPML1 functions as a Fe(2+) permeable channel in late endosomes and lysosomes. ML4 mutations are shown to impair the ability of TRPML1 to permeate Fe(2+) at varying degrees, which correlate well with the disease severity. A comparison of TRPML1(-/- )ML4 and control human skin fibroblasts showed a reduction in cytosolic Fe(2+) levels, an increase in intralysosomal Fe(2+) levels and an accumulation of lipofuscin-like molecules in TRPML1(-/-) cells. We propose that TRPML1 mediates a mechanism by which Fe(2+) is released from late endosomes and lysosomes. Our results indicate that impaired iron transport may contribute to both haematological and degenerative symptoms of ML4 patients.


Assuntos
Endossomos/metabolismo , Ferro/metabolismo , Lisossomos/metabolismo , Mucolipidoses/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Permeabilidade da Membrana Celular , Fibroblastos , Fluorescência , Humanos , Transporte de Íons , Ferro/análise , Camundongos , Prótons , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Transfecção , Canais de Potencial de Receptor Transitório
20.
Neuron ; 54(4): 599-610, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17521572

RESUMO

Neuregulin-1 (NRG1), a regulator of neural development, has been shown to regulate neurotransmission at excitatory synapses. Although ErbB4, a key NRG1 receptor, is expressed in glutamic acid decarboxylase (GAD)-positive neurons, little is known about its role in GABAergic transmission. We show that ErbB4 is localized at GABAergic terminals of the prefrontal cortex. Our data indicate a role of NRG1, both endogenous and exogenous, in regulation of GABAergic transmission. This effect was blocked by inhibition or mutation of ErbB4, suggesting the involvement of ErbB4. Together, these results indicate that NRG1 regulates GABAergic transmission via presynaptic ErbB4 receptors, identifying a novel function of NRG1. Because both NRG1 and ErbB4 have emerged as susceptibility genes of schizophrenia, these observations may suggest a mechanism for abnormal GABAergic neurotransmission in this disorder.


Assuntos
Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Neurônios/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hibridização In Situ , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Neurônios/citologia , Neurônios/fisiologia , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Cloreto de Potássio/farmacologia , Terminações Pré-Sinápticas/metabolismo , Ratos , Receptor ErbB-4 , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA