Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258906

RESUMO

Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). At the front line, gut macrophages react to the microbiota and metabolites that breach the epithelium. We aim to study the role of the BA/FXR axis in macrophages. This study demonstrates that inflammation-induced epithelial abnormalities compromised FXR signaling and altered BAs' profile in a mouse CAC model. Further, gut macrophage-intrinsic FXR sensed aberrant BAs, leading to pro-inflammatory cytokines' secretion, which promoted intestinal stem cell proliferation. Mechanistically, activation of FXR ameliorated intestinal inflammation and inhibited colitis-associated tumor growth, by regulating gut macrophages' recruitment, polarization, and crosstalk with Th17 cells. However, deletion of FXR in bone marrow or gut macrophages escalated the intestinal inflammation. In summary, our study reveals a distinctive regulatory role of FXR in gut macrophages, suggesting its potential as a therapeutic target for addressing IBD and CAC.


Assuntos
Colite , Neoplasias do Colo , Receptores Citoplasmáticos e Nucleares , Animais , Camundongos , Ácidos e Sais Biliares , Colite/complicações , Neoplasias do Colo/etiologia , Modelos Animais de Doenças , Inflamação , Macrófagos , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
Cell Mol Gastroenterol Hepatol ; 17(2): 292-308.e1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37820788

RESUMO

BACKGROUND & AIMS: Metabolic reprogramming is essential for the activation and functions of macrophages, including bacterial killing and cytokine production. Bromodomain-containing protein 4 (BRD4) has emerged as a critical regulator of innate immune response. However, the potential role of BRD4 in the metabolic reprogramming of macrophage activation upon Helicobacter pylori infection remains unclear. METHODS: Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Brd4-myeloid deletion conditional knockout (Brd4-CKO) mice were infected with H pylori. RNA sequencing was performed to evaluate the differential gene expression between WT and Brd4-deficient BMDMs upon infection. An in vivo model of H pylori infection using WT and Brd4-CKO mice was used to confirm the role of BRD4 in innate immune response to infection. RESULTS: Depletion of Brd4 in BMDMs showed impaired H pylori-induced glycolysis. In addition, H pylori-induced expression of glycolytic genes, including Slc2a1 and Hk2, was decreased in Brd4-deficient BMDMs. BRD4 was recruited to the promoters of Slc2a1 and Hk2 via hypoxia-inducible factor-1α, facilitating their expression. BRD4-mediated glycolysis stabilized H pylori-induced nitric oxide synthase (Nos2) messenger RNA to produce nitric oxide. The NO-mediated killing of H pylori decreased in Brd4-deficient BMDMs, which was rescued by pyruvate. Furthermore, Brd4-CKO mice infected with H pylori showed reduced gastric inflammation and increased H pylori colonization with reduced inducible NO synthase expression in gastric macrophages. CONCLUSIONS: Our study identified BRD4 as a key regulator of hypoxia-inducible factor-1α-dependent glycolysis and macrophage activation. Furthermore, we show a novel regulatory role of BRD4 in innate immunity through glycolysis to stabilize Nos2 messenger RNA for NO production to eliminate H pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infecções por Helicobacter/microbiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Helicobacter pylori/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase/metabolismo , RNA Mensageiro/metabolismo , Glicólise , Óxido Nítrico Sintase Tipo II/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895002

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are common carcinogens. Benzo(a)pyrene is one of the most difficult high-molecular-weight (HMW) PAHs to remove. Biodegradation has become an ideal method to eliminate PAH pollutants from the environment. The existing research is mostly limited to low-molecular-weight PAHs; there is little understanding of HMW PAHs, particularly benzo(a)pyrene. Research into the biodegradation of HMW PAHs contributes to the development of microbial metabolic mechanisms and also provides new systems for environmental treatments. Pseudomonas benzopyrenica BaP3 is a highly efficient benzo(a)pyrene-degrading strain that is isolated from soil samples, but its mechanism of degradation remains unknown. In this study, we aimed to clarify the high degradation efficiency mechanism of BaP3. The genes encoding Rhd1 and Rhd2 in strain BaP3 were characterized, and the results revealed that rhd1 was the critical factor for high degradation efficiency. Molecular docking and enzyme activity determinations confirmed this conclusion. A recombinant strain that could completely mineralize benzo(a)pyrene was also proposed for the first time. We explained the mechanism of the high-efficiency benzo(a)pyrene degradation ability of BaP3 to improve understanding of the degradation mechanism of highly toxic PAHs and to provide new solutions to practical applications via synthetic biology.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Benzo(a)pireno/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Simulação de Acoplamento Molecular , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo
5.
FEBS Open Bio ; 12(9): 1644-1656, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792784

RESUMO

Dinutuximab (ch14.18) was the first approved monoclonal antibody against the tumor-associated antigen disialoganglioside GD2. Despite its success in treating neuroblastoma (NB), it triggers a significant amount of neuropathic pain in patients, possibly through complement-dependent cytotoxicity (CDC). We hypothesized that modifying ch14.18 using antibody engineering techniques, such as humanization, affinity maturation, and Fc engineering, may enable the development of next-generation GD2-specific antibodies with reduced neuropathic pain and enhanced antitumor activity. In this study we developed the H3-16 IgG1m4 antibody from ch14.18 IgG1. H3-16 IgG1m4 exhibited enhanced binding activity to GD2 molecules and GD2-positive cell lines as revealed by ELISA, and its cross-binding activity to other gangliosides was not altered. The CDC activity of H3-16 IgG1m4 was decreased, and the antibody-dependent cellular cytotoxicity (ADCC) activity was enhanced. The pain response after H3-16 IgG1m4 antibody administration was also reduced, as demonstrated using the von Frey test in Sprague-Dawley (SD) rats. In summary, H3-16 IgG1m4 may have potential as a monoclonal antibody with reduced side effects.


Assuntos
Anticorpos Monoclonais , Neuralgia , Animais , Anticorpos Monoclonais/farmacologia , Gangliosídeos , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
6.
FEBS Open Bio ; 12(7): 1325-1335, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35417079

RESUMO

Current treatment options for diabetic neuralgia are limited and unsatisfactory. Tanezumab, a monoclonal antibody that blocks nerve growth factor (NGF) signaling, has been shown to be effective in relieving the clinical symptoms of osteoarthritis pain, chronic low back pain, cancer pain induced by bone metastasis, and diabetic neuralgia. However, the clinical development of tanezumab has been terminated due to the risk of induction of rapidly progressive osteoarthritis (RPOA), and no other NGF antibodies have been examined for their ability to treat diabetic neuralgia in either animal models or clinical trials. In this study, a humanized high-affinity NGF monoclonal antibody (mAb), huAb45 that could neutralize the interaction between NGF and its high-affinity receptor TrkA. In a mouse diabetic neuralgia model, it effectively relieved neuropathic pain. This study may serve as the necessary foundation for future studies of huAb45 to potentially treat diabetic neuralgia.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Osteoartrite , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Anticorpos Monoclonais/farmacologia , Diabetes Mellitus/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Fator de Crescimento Neural/metabolismo
7.
Life Sci ; 294: 120383, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143827

RESUMO

AIMS: Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. MAIN METHODS: A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. KEY FINDINGS: A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. SIGNIFICANCE: These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.


Assuntos
Axônios/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/prevenção & controle , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Tirfostinas/farmacologia , Animais , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ratos , Ratos Sprague-Dawley
8.
J Biol Chem ; 297(6): 101420, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798072

RESUMO

Activation of the programmed cell death protein 1 and programmed cell death ligand 1 (PD-1/PD-L1) signaling axis plays important roles in intrinsic or acquired resistance to human epidermal growth factor receptor 2 (HER2)-directed therapies in the clinic. Therefore, therapies simultaneously targeting both HER2 and PD-1/PD-L1 signaling pathways are of great significance. Here, aiming to direct the anti-PD-L1 responses toward HER2-expressing tumor cells, we constructed a humanized bispecific IgG1 subclass antibody targeting both HER2 and PD-L1 (HER2/PD-L1; BsAb), which displayed satisfactory purity, thermostability, and serum stability. We found that BsAb showed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. In the late phase of peripheral blood mononuclear cell (PBMC)-humanized HER2+ tumor xenograft models, BsAb showed superior therapeutic efficacies as compared with monoclonal antibodies (mAbs) or combination treatment strategies. In cynomolgus monkeys, BsAb showed favorable pharmacokinetics and toxicity profiles when administered at a 10 mg/kg dosage. Thus, HER2/PD-L1 BsAb was demonstrated as a potentially effective option for managing HER2+ and trastuzumab-resistant tumors in the clinic. We propose that the enhanced antitumor activities of BsAb in vivo may be due to direct inhibition of HER2 signaling or activation of T cells.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Experimentais/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
STAR Protoc ; 2(4): 100894, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34723211

RESUMO

NLR family CARD domain containing protein 4 (NLRC4) inflammasome activation and the associated pyroptosis are critical for protection against infection by bacterial pathogens. This protocol presents a detailed procedure to activate and measure NLRC4 inflammasome activation and pyroptosis upon Salmonella Typhimurium infection. The techniques can be adapted to monitoring the activation of other types of inflammasomes and pathogenic stimuli. For comprehensive details on the use and execution of this protocol, please refer to Dong et al. (2021).


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas de Ligação ao Cálcio , Inflamassomos , Macrófagos , Piroptose/fisiologia , Animais , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/metabolismo , Inflamassomos/análise , Inflamassomos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Microscopia de Fluorescência
10.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830083

RESUMO

Macrophage-mediated inflammatory response has been implicated in the pathogenesis of obesity and insulin resistance. Brd4 has emerged as a key regulator in the innate immune response. However, the role of Brd4 in obesity-associated inflammation and insulin resistance remains uncharacterized. Here, we demonstrated that myeloid lineage-specific Brd4 knockout (Brd4-CKO) mice were protected from high-fat diet-induced (HFD-induced) obesity with less fat accumulation, higher energy expenditure, and increased lipolysis in adipose tissue. Brd4-CKO mice fed a HFD also displayed reduced local and systemic inflammation with improved insulin sensitivity. RNA-Seq of adipose tissue macrophages (ATMs) from HFD-fed WT and Brd4-CKO mice revealed that expression of antilipolytic factor Gdf3 was significantly decreased in ATMs of Brd4-CKO mice. We also found that Brd4 bound to the promoter and enhancers of Gdf3 to facilitate PPARγ-dependent Gdf3 expression in macrophages. Furthermore, Brd4-mediated expression of Gdf3 acted as a paracrine signal targeting adipocytes to suppress the expression of lipases and the associated lipolysis in cultured cells and mice. Controlling the expression of Gdf3 in ATMs could be one of the mechanisms by which Brd4 modulates lipid metabolism and diet-induced obesity. This study suggests that Brd4 could be a potential therapeutic target for obesity and insulin resistance.


Assuntos
Tecido Adiposo/citologia , Fator 3 de Diferenciação de Crescimento/genética , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Obesidade/etiologia , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Fator 3 de Diferenciação de Crescimento/metabolismo , Resistência à Insulina/genética , Lipase/genética , Lipase/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipólise/genética , Masculino , Camundongos Knockout , Proteínas Nucleares/genética , PPAR gama/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
11.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535228

RESUMO

NLRC4 inflammasome activation and the subsequent maturation of IL-1ß and IL-18 are critical for protection against infection by bacterial pathogens. The epigenetic regulator Brd4 has emerged as a key player in inflammation by regulating the expression of inflammatory cytokines. However, whether Brd4 has any role in inflammasome activation remains undetermined. Here, we demonstrated that Brd4 is an important regulator of NLRC4 inflammasome activation in response to Salmonella typhimurium infection. Brd4-deficient bone marrow-derived macrophages (BMDMs) displayed impaired caspase-1 activation, ASC oligomerization, IL-1ß maturation, gasdermin-D cleavage, and pyroptosis in response to S.typhimurium infection. RNA sequencing and RT-PCR results revealed that the transcription of Naips was decreased in Brd4-deficient BMDMs. Brd4 formed a complex with IRF8/PU.1 and bound to the IRF8 and PU.1 binding motifs on the promoters of Naips to maintain the expression of Naips. Furthermore, myeloid lineage-specific Brd4 conditional knockout mice were more susceptible to S.typhimurium infection with increased mortality, bacterial loads, and tissue damage; impaired inflammasome-dependent cytokine production; and pyroptosis. Our studies identify a novel function of Brd4 in innate immunity by controlling inflammasome-mediated cytokine release and pyroptosis to effectively battle S.typhimurium infection.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inflamassomos/metabolismo , Fatores Reguladores de Interferon/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ilhas de CpG/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Modelos Biológicos , Proteína Inibidora de Apoptose Neuronal/genética , Proteína Inibidora de Apoptose Neuronal/metabolismo , Proteínas Nucleares/deficiência , Proteínas de Ligação a Fosfato/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Piroptose , Salmonella typhimurium/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/deficiência
12.
Cell Death Dis ; 11(8): 667, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820150

RESUMO

H. pylori infection is one of the leading causes of gastric cancer and the pathogenicity of H. pylori infection is associated with its ability to induce chronic inflammation and apoptosis resistance. While H. pylori infection-induced expression of pro-inflammatory cytokines for chronic inflammation is well studied, the molecular mechanism underlying the apoptosis resistance in infected cells is not well understood. In this study, we demonstrated that H. pylori infection-induced apoptosis resistance in gastric epithelial cells triggered by Raptinal, a drug that directly activates caspase-3. This resistance resulted from the induction of cIAP2 (encoded by BIRC3) since depletion of BIRC3 by siRNA or inhibition of cIAP2 via BV6 reversed H. pylori-suppressed caspase-3 activation. The induction of cIAP2 was regulated by H. pylori-induced BIRC3 eRNA synthesis. Depletion of BIRC3 eRNA decreased H. pylori-induced cIAP2 and reversed H. pylori-suppressed caspase-3 activation. Mechanistically, H. pylori stimulated the recruitment of bromodomain-containing factor Brd4 to the enhancer of BIRC3 and promoted BIRC3 eRNA and mRNA synthesis. Inhibition of Brd4 diminished the expression of BIRC3 eRNA and the anti-apoptotic response to H. pylori infection. Importantly, H. pylori isogenic cagA-deficient mutant failed to activate the synthesis of BIRC3 eRNA and the associated apoptosis resistance. Finally, in primary human gastric epithelial cells, H. pylori also induced resistance to Raptinal-triggered caspase-3 activation by activating the Brd4-dependent BIRC3 eRNA synthesis in a CagA-dependent manner. These results identify a novel function of Brd4 in H. pylori-mediated apoptosis resistance via activating BIRC3 eRNA synthesis, suggesting that Brd4 could be a potential therapeutic target for H. pylori-induced gastric cancer.


Assuntos
Apoptose/fisiologia , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Elementos Facilitadores Genéticos/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteína 3 com Repetições IAP de Baculovírus/fisiologia , Caspase 3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estômago/patologia , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/metabolismo
13.
Angew Chem Int Ed Engl ; 59(9): 3444-3449, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31825550

RESUMO

The diverse secondary structures of nucleic acids are emerging as attractive chiral scaffolds to construct artificial metalloenzymes (ArMs) for enantioselective catalysis. DNA-based ArMs containing duplex and G-quadruplex scaffolds have been widely investigated, yet RNA-based ArMs are scarce. Here we report that a cyclic dinucleotide of c-di-AMP and Cu2+ ions assemble into an artificial metalloribozyme (c-di-AMP⋅Cu2+ ) that enables catalysis of enantioselective Friedel-Crafts reactions in aqueous media with high reactivity and excellent enantioselectivity of up to 97 % ee. The assembly of c-di-AMP⋅Cu2+ gives rise to a 20-fold rate acceleration compared to Cu2+ ions. Based on various biophysical techniques and density function theory (DFT) calculations, a fine coordination structure of c-di-AMP⋅Cu2+ metalloribozyme is suggested in which two c-di-AMP form a dimer scaffold and the Cu2+ ion is located in the center of an adenine-adenine plane through binding to two N7 nitrogen atoms and one phosphate oxygen atom.


Assuntos
Reação de Cicloadição , Fosfatos de Dinucleosídeos/química , Água/química , Catálise , Cobre/química , Teoria da Densidade Funcional , Dimerização , Fosfatos de Dinucleosídeos/metabolismo , Quadruplex G , Cinética , Metaloproteínas/química , Metaloproteínas/metabolismo , Estereoisomerismo , Especificidade por Substrato
14.
Cell Death Dis ; 9(2): 203, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434197

RESUMO

Small molecules targeting bromodomains of BET proteins possess strong anti-tumor activities and have emerged as potential therapeutics for cancer. However, the underlying mechanisms for the anti-proliferative activity of these inhibitors are still not fully characterized. In this study, we demonstrated that BET inhibitor JQ1 suppressed the proliferation and invasiveness of gastric cancer cells by inducing cellular senescence. Depletion of BRD4, which was overexpressed in gastric cancer tissues, but not other BET proteins recapitulated JQ1-induced cellular senescence with increased cellular SA-ß-Gal activity and elevated p21 levels. In addition, we showed that the levels of p21 were regulated at the post-transcriptional level by BRD4-dependent expression of miR-106b-5p, which targets the 3'-UTR of p21 mRNA. Overexpression of miR-106b-5p prevented JQ1-induced p21 expression and BRD4 inhibition-associated cellular senescence, whereas miR-106b-5p inhibitor up-regulated p21 and induced cellular senescence. Finally, we demonstrated that inhibition of E2F suppressed the binding of BRD4 to the promoter of miR-106b-5p and inhibited its transcription, leading to the increased p21 levels and cellular senescence in gastric cancer cells. Our results reveal a novel mechanism by which BRD4 regulates cancer cell proliferation by modulating the cellular senescence through E2F/miR-106b-5p/p21 axis and provide new insights into using BET inhibitors as potential anticancer drugs.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição E2F/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Fatores de Transcrição E2F/genética , Feminino , Humanos , Masculino , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Neoplasias Gástricas/genética , Fatores de Transcrição/genética
15.
Sensors (Basel) ; 16(11)2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27834895

RESUMO

Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF6, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H2S and SO2, two decomposed products of SF6 under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H2S and SO2 when concentration of gases range from 10 to 100 µL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H2S and SO2 in gas-insulated switchgears at room temperature.

16.
Nanoscale Res Lett ; 11(1): 302, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27316743

RESUMO

Since Zwilling and co-workers first introduced the electrochemical anodization method to prepare TiO2 nanotubes in 1999, it has attracted a lot of researches due to its outstanding gas response and selectivity, making it widely used in gas detection field. This review presents an introduction to the sensor applications of TiO2 nanotube arrays (TNTAs) in sulfur hexafluoride (SF6)-insulated equipment, which is used to evaluate and diagnose the insulation status of SF6-insulated equipment by detecting their typical decomposition products of SF6: sulfur dioxide (SO2), thionyl fluoride (SOF2), and sulfuryl fluoride (SO2F2). The synthesis and sensing properties of TiO2 nanotubes are discussed first. Then, it is followed by discussing the theoretical sensing to the typical SF6 decomposition products, SO2, SOF2, and SO2F2, which analyzes the sensing mechanism at the molecular level. Finally, the gas response of pure and modified TiO2 nanotubes sensor to SO2, SOF2, and SO2F2 is provided according to the change of resistance in experimental observation.

17.
Sensors (Basel) ; 14(10): 19517-32, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25330053

RESUMO

The analysis to SF6 decomposed component gases is an efficient diagnostic approach to detect the partial discharge in gas-insulated switchgear (GIS) for the purpose of accessing the operating state of power equipment. This paper applied the Au-doped TiO2 nanotube array sensor (Au-TiO2 NTAs) to detect SF6 decomposed components. The electrochemical constant potential method was adopted in the Au-TiO2 NTAs' fabrication, and a series of experiments were conducted to test the characteristic SF6 decomposed gases for a thorough investigation of sensing performances. The sensing characteristic curves of intrinsic and Au-doped TiO2 NTAs were compared to study the mechanism of the gas sensing response. The results indicated that the doped Au could change the TiO2 nanotube arrays' performances of gas sensing selectivity in SF6 decomposed components, as well as reducing the working temperature of TiO2 NTAs.


Assuntos
Técnicas Eletroquímicas , Gases/isolamento & purificação , Nanotubos/química , Hexafluoreto de Enxofre/isolamento & purificação , Gases/química , Ouro/química , Hexafluoreto de Enxofre/química , Temperatura , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA