Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 5(6): 1700732, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938164

RESUMO

Frustrated Lewis pairs (FLPs) created by sterically hindered Lewis acids and Lewis bases have shown their capacity for capturing and reacting with a variety of small molecules, including H2 and CO2, and thereby creating a new strategy for CO2 reduction. Here, the photocatalytic CO2 reduction behavior of defect-laden indium oxide (In2O3-x (OH) y ) is greatly enhanced through isomorphous substitution of In3+ with Bi3+, providing fundamental insights into the catalytically active surface FLPs (i.e., In-OH···In) and the experimentally observed "volcano" relationship between the CO production rate and Bi3+ substitution level. According to density functional theory calculations at the optimal Bi3+ substitution level, the 6s2 electron pair of Bi3+ hybridizes with the oxygen in the neighboring In-OH Lewis base site, leading to mildly increased Lewis basicity without influencing the Lewis acidity of the nearby In Lewis acid site. Meanwhile, Bi3+ can act as an extra acid site, serving to maximize the heterolytic splitting of reactant H2, and results in a more hydridic hydride for more efficient CO2 reduction. This study demonstrates that isomorphous substitution can effectively optimize the reactivity of surface catalytic active sites in addition to influencing optoelectronic properties, affording a better understanding of the photocatalytic CO2 reduction mechanism.

2.
ACS Nano ; 10(5): 5578-86, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27159793

RESUMO

The development of strategies for increasing the lifetime of photoexcited charge carriers in nanostructured metal oxide semiconductors is important for enhancing their photocatalytic activity. Intensive efforts have been made in tailoring the properties of the nanostructured photocatalysts through different ways, mainly including band-structure engineering, doping, catalyst-support interaction, and loading cocatalysts. In liquid-phase photocatalytic dye degradation and water splitting, it was recently found that nanocrystal superstructure based semiconductors exhibited improved spatial separation of photoexcited charge carriers and enhanced photocatalytic performance. Nevertheless, it remains unknown whether this strategy is applicable in gas-phase photocatalysis. Using porous indium oxide nanorods in catalyzing the reverse water-gas shift reaction as a model system, we demonstrate here that assembling semiconductor nanocrystals into superstructures can also promote gas-phase photocatalytic processes. Transient absorption studies prove that the improved activity is a result of prolonged photoexcited charge carrier lifetimes due to the charge transfer within the nanocrystal network comprising the nanorods. Our study reveals that the spatial charge separation within the nanocrystal networks could also benefit gas-phase photocatalysis and sheds light on the design principles of efficient nanocrystal superstructure based photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA