Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Innovations (Phila) ; : 15569845241285872, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39487592

RESUMO

OBJECTIVE: This study aims to assess the safety, efficacy, and esthetic outcomes of an innovative 4 cm right infra-axillary incision approach for concomitant ascending aorta and aortic valve replacement (AAR and AVR), with a specific focus on achieving optimal surgical outcomes while ensuring minimal visible scarring. METHODS: We retrospectively examined all elective cases of concomitant AAR and AVR surgery performed at our institution from July 2021 to June 2023. Exclusions encompassed emergency surgery, acute type A aortic dissection, active aortic valve endocarditis, redo cardiac surgery, the necessity for concurrent mitral valve replacement, or left ventricular assist device implantation. We collected and analyzed perioperative data for the patients. RESULTS: The study comprised 24 consecutive patients. Cardiopulmonary bypass time and aortic cross-clamp time averaged 215.0 (interquartile range [IQR], 38.0) and 158.0 (IQR, 37.0) min, respectively. No instances of reoperation due to postoperative bleeding or need for permanent pacemaker implantation were recorded. Initial 24-h postoperative drainage volume averaged 186.9 ± 76.9 mL. Average follow-up duration was 21.7 ± 6.2 months (range, 5 to 30 months). Throughout short-term follow-up, no occurrences of valve dysfunction, paravalvular leak, cardiovascular events necessitating readmission, or mortality were observed. CONCLUSIONS: The right infra-axillary incision approach effectively yields secure, successful, and cosmetically pleasing outcomes for concomitant AAR and AVR. Further research and comparisons are warranted to validate these findings.

2.
Biomaterials ; 315: 122912, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39490059

RESUMO

Stroke is one of the leading causes of death and disability in the world. Ischemic stroke causes overproduction of reactive oxygen/nitrogen species (RONS) after reperfusion, triggering inflammatory responses that further leads to cell damage. In order to develop novel neuroprotective materials, we synthesized zinc sulfide nanoparticles (ZnS NPs) to function as gas slow-release bioreactors, showcasing stable and sustained H2S release while effectively removing RONS. In cultured cells, ZnS NPs can reduce the oxidative damage caused by oxygen-glucose deprivation and reoxygenation (OGD/R), promote the expression of p-AMPK, enhance microglia M2 polarization, decrease inflammatory factors and reduce neuronal apoptosis. Additionally, it increases the proliferation and migration of endothelial cells, promoting the formation of new neurovascular units by regulating the protein of p-AKT. In mice with ischemic stroke induced by middle cerebral artery occlusion/reperfusion (MCAO/R), ZnS NPs significantly reduce the infarct area and restore the mobility of mice owing to the slow release of H2S. In summary, our results indicate that ZnS NPs can be used as H2S slow-release bioreactors, offering a potentially innovative approach to treat ischemia-reperfusion injury caused by stroke.

3.
Heart ; 110(22): 1298-1306, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39266045

RESUMO

BACKGROUND: Acute aortic dissection (AD) in pregnancy poses a lethal risk to both mother and fetus. However, well-established therapeutic guidelines are lacking. This study aimed to investigate clinical features, outcomes and optimal management strategies for pregnancy-related AD. METHODS: We conducted a retrospective multicentre cohort study including 67 women with acute AD during pregnancy or within 12 weeks postpartum from three major cardiovascular centres in China between 2003 and 2021. Patient characteristics, management strategies and short-term outcomes were analysed. RESULTS: Median age was 31 years, with AD onset at median 32 weeks gestation. Forty-six patients (68.7%) had type A AD, of which 41 underwent immediate surgery. Overall maternal mortality was 10.4% (7/67) and fetal mortality was 26.9% (18/67). Compared with immediate surgery, selective surgery was associated with higher risk of composite maternal and fetal death (adjusted RR: 12.47 (95% CI 3.26 to 47.73); p=0.0002) and fetal death (adjusted RR: 8.77 (95% CI 2.33 to 33.09); p=0.001). CONCLUSIONS: Immediate aortic surgery should be considered for type A AD at any stage of pregnancy or postpartum. For pregnant women with AD before fetal viability, surgical treatment with the fetus in utero should be considered. Management strategies should account for dissection type, gestational age, and fetal viability. TRIAL REGISTRATION NUMBER: NCT05501145.


Assuntos
Dissecção Aórtica , Complicações Cardiovasculares na Gravidez , Humanos , Feminino , Gravidez , Dissecção Aórtica/cirurgia , Dissecção Aórtica/mortalidade , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/terapia , Adulto , China/epidemiologia , Complicações Cardiovasculares na Gravidez/terapia , Estudos Retrospectivos , Aneurisma Aórtico/mortalidade , Aneurisma Aórtico/cirurgia , Aneurisma Aórtico/terapia , Aneurisma Aórtico/diagnóstico , Aneurisma Aórtico/epidemiologia , Doença Aguda , Mortalidade Materna , Fatores de Risco , Resultado do Tratamento
4.
Sci Rep ; 14(1): 20199, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215105

RESUMO

Temozolomide (TMZ) resistance is a major challenge in the treatment of glioblastoma (GBM). Tumour reproductive cells (TRCs) have been implicated in the development of chemotherapy resistance. By culturing DBTRG cells in three-dimensional soft fibrin gels to enrich GBM TRCs and performing RNA-seq analysis, the expression of stanniocalcin-1 (STC), a gene encoding a secreted glycoprotein, was found to be upregulated in TRCs. Meanwhile, the viability of TMZ-treated TRC cells was significantly higher than that of TMZ-treated 2D cells. Analysis of clinical data from CGGA (Chinese Glioma Genome Atlas) database showed that high expression of STC1 was closely associated with poor prognosis, glioma grade and resistance to TMZ treatment, suggesting that STC1 may be involved in TMZ drug resistance. The expression of STC1 in tissues and cells was examined, as well as the effect of STC1 on GBM cell proliferation and TMZ-induced DNA damage. The results showed that overexpression of STC1 promoted and knockdown of STC1 inhibited TMZ-induced DNA damage. These results were validated in an intracranial tumour model. These data revealed that STC1 exerts regulatory functions on MGMT expression in GBM, and provides a rationale for targeting STC1 to overcome TMZ resistance.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glicoproteínas , Temozolomida , Animais , Feminino , Humanos , Masculino , Camundongos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glicoproteínas/metabolismo , Glicoproteínas/genética , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
Adv Sci (Weinh) ; 11(39): e2403574, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39136049

RESUMO

Cytopathology, crucial in disease diagnosis, commonly uses microscopic slides to scrutinize cellular abnormalities. However, processing high volumes of samples often results in numerous negative diagnoses, consuming significant time and resources in healthcare. To address this challenge, a surface acoustic wave-enhanced multi-view acoustofluidic rotation cytometry (MARC) technique is developed for pre-cytopathological screening. MARC enhances cellular morphology analysis through comprehensive and multi-angle observations and amplifies subtle cell differences, particularly in the nuclear-to-cytoplasmic ratio, across various cell types and between cancerous and normal tissue cells. By prioritizing MARC-screened positive cases, this approach can potentially streamline traditional cytopathology, reducing the workload and resources spent on negative diagnoses. This significant advancement enhances overall diagnostic efficiency, offering a transformative vision for cytopathological screening.


Assuntos
Citometria de Fluxo , Humanos , Citometria de Fluxo/métodos , Acústica , Som , Citodiagnóstico/métodos
6.
Int J Neurosci ; : 1-11, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155776

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy not only affects the tolerability of chemotherapy, but also causes intolerable and prolonged neuropathic pain in cancer patients. Currently, duloxetine is the only drug used to treat chemotherapy-induced peripheral neuropathy. However, the clinical use of this drug still faces several challenges. Therefore, we focused on traditional Chinese medicine to find an effective and safe alternative medicine. Huangqi Guizhi Wuwu Decoction is a traditional Chinese medicine that has been clinically used for treating nerve pain for thousands of years. This study aimed to investigate the neuroprotective effect of Huangqi Guizhi Wuwu Decoction on cisplatin-induced nerve injury in PC12 cells and to elucidate its potential mechanism of action. METHODS: Huangqi Guizhi Wuwu Decoction-containing serum and blank serum were prepared from a rat model. The protective effects of Huangqi Guizhi Wuwu Decoction on cisplatin (10 µmol/L)-induced PC12 cell injury were assessed by a Cell Counting Kit-8 assay. RNA expression in Huangqi Guizhi Wuwu Decoction-protected PC12 cells was analyzed using RNA-seq, and subsequently, differentially expressed genes were further analyzed using Gene Ontology and Gene Set Enrichment Analysis. RESULTS: The Cell Counting Kit-8 results showed that pretreatment of PC12 cells with Huangqi Guizhi Wuwu Decoction-containing serum (5%, 10%, 15%) significantly increased cells' viability to 10 µmol/L cisplatin-induced cell death. RNA-seq analysis revealed 843 differentially expressed genes in the chemotherapy-induced peripheral neuropathy group and 249 in the Huangqi Guizhi Wuwu Decoction group. The gene set enrichment analysis results in this study suggest that Huangqi Guizhi Wuwu Decoction may treat chemotherapy-induced peripheral neuropathy by enhancing axon guidance. CONCLUSIONS: This study provides valuable evidence for using Huangqi Guizhi Wuwu Decoction in treating chemotherapy-induced peripheral neuropathy, partially achieved by improving axon guidance pathways.

8.
ACS Med Chem Lett ; 15(7): 1151-1158, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39015284

RESUMO

MUS81 is a structure-selective endonuclease that cleaves various branched DNA structures arising from natural physiological processes such as homologous recombination and mitosis. Due to this, MUS81 is able to relieve replication stress, and its function has been reported to be critical to the survival of many cancers, particularly those with dysfunctional DNA-repair machinery. There is therefore interest in MUS81 as a cancer drug target, yet there are currently few small molecule inhibitors of this enzyme reported, and no liganded crystal structures are available to guide hit optimization. Here we report the fragment-based discovery of novel small molecule MUS81 inhibitors with sub-µM biochemical activity. These inhibitors were used to develop a novel crystal system, providing the first structural insight into the inhibition of MUS81 with small molecules.

9.
J Cancer ; 15(14): 4477-4489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006069

RESUMO

Background: Glioblastoma multiforme (GBM) is the most common malignant form of glioma, but the molecular mechanisms underlying the progression of GBM in hypoxic microenvironment remain elusive. This study aims to explore the pathological functions of hypoxia-responsive genes on GBM progression and its downstream signaling pathways. Methods: RNA-seq was performed in normoxic and hypoxic U87 cells to identify the differentially expressed genes (DEGs) under hypoxia. The mRNA expression levels of hypoxia-responsive gene F3 in glioma clinical samples were analyzed according to the transcriptional information from CGGA, TCGA and Rembrandt databases. EdU, transwell and wound-healing assays were conducted to evaluate the pathological functions of F3 on GBM proliferation and migration under hypoxia. RNA-seq and gene set enrichment analysis were conducted to analyze the enriched pathways in LN229 cells overexpressed F3 compared to controls. GBM cells were treated with NF-κB inhibitor PDTC, and cell experiments were performed to evaluate the effects of PDTC on OE-F3-LN229 and OE-F3-U87 cells. Western blot was performed to validate the downstream pathways. Results: F3 was identified as a hypoxia responsive gene in GBM cells. The mRNA expression level of F3 was negatively correlated with the overall survival of glioma patients, and significantly increased in grade IV and GBM than lower grade or other histology of glioma. Overexpression of F3 enhanced the proliferation and migration of hypoxic U87 and LN229 cells, while knockdown inhibited them. In OE-F3-LN229 cells, the NF-κB pathway was activated, with an increased level of phosphorylated p65. PDTC treatment effectively rescued the enhanced proliferation and migration of OE-F3-LN229 cells under hypoxia, indicating that the effect of F3 on GBM progression is probably dependent on the NF-κB pathway. Conclusion: Hypoxia-induced F3 activates NF-κB pathway through upregulation of the phosphorylated p65, thus promoting the proliferation and migration of GBM cells under hypoxia, which might be a potential therapeutic target for GBM treatment.

10.
Environ Toxicol ; 39(9): 4417-4430, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38842024

RESUMO

Gliomas are the most prevalent primary malignant brain tumors worldwide. Growing evidences indicate that circular RNAs (circRNAs) play an important role in the regulation of biological behavior of tumors. We aimed to investigate the role and mechanism of circVCAN in glioma. RNase R treatment was utilized to assess the cyclic properties of circVCAN. CircVCAN, miR-488-3p, and myocyte enhancer factor 2C (MEF2C) levels in glioma tissues and cells were detected by reverse transcription real-time polymerase chain reaction (RT-qPCR), and the localization of them in glioma cells was determined with fluorescence in situ hybridization. Furthermore, a variety of biologically functional assessments were used to validate the role of circVCAN in glioma. The regulatory mechanisms of circVCAN, miR-488-3p, and MEF2C were further confirmed by double luciferase reporter gene assay, RNA immunoprecipitation and RNA pull-down assay, and the binding of MEF2C to JAGGED1 was revealed by chromatin immunoprecipitation. Additionally, a xenograft tumor model was constructed to demonstrate the effect of circVCAN on tumor growth in vivo. Our results indicated that circVCAN was more stable than its linear RNA and was significantly upregulated in gliomas. CircVCAN overexpression stimulated glioma cells to proliferate and metastasize, but circVCAN silencing exerted the opposite effect. Meanwhile, silencing circVCAN inhibited tumor growth in vivo. Moreover, we found that circVCAN interacted with miR-488-3p to regulate MEF2C expression, and miR-488-3p inhibition or MEF2C overexpression reversed the inhibitory effect on malignant bio-behaviors mediated by circVCAN knockdown in glioma cells. MEF2C promoted the transcription of JAGGED1, and circVCAN knockdown reduced the binding between MEF2C and JAGGED1. Collectively, circVCAN is a carcinogenic circRNA in glioma, and the circVCAN/miR-488-3p/MEF2C-JAGGED1 axis could serve as a potential target for the management of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Proteína Jagged-1 , Fatores de Transcrição MEF2 , MicroRNAs , RNA Circular , Animais , Humanos , Masculino , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Versicanas/genética , Versicanas/metabolismo
11.
J Orthop Surg Res ; 19(1): 370, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907263

RESUMO

BACKGROUND: Long non-coding RNAs (LncRNAs) are recognized as a pivotal element in the processes of fracture healing and the osteogenic differentiation of stem cells. This study investigated the molecular mechanism and regulatory significance of lncRNA MAGI2-AS3 (MAGI2-AS3) in fracture healing. METHODS: Serum levels of MAGI2-AS3 in patients with normal and delayed fracture healing were verified by RT-qPCR assays. The predictive efficacy of MAGI2-AS3 for delayed fracture healing was analyzed by ROC curve. Osteogenic markers were quantified by RT-qPCR assays. MC3T3-E1 cell viability was detected using CCK-8 assay, and flow cytometry was utilized to measure cell apoptosis. The dual-luciferase reporter gene assay was used to determine the targeted binding between MAGI2-AS3 and miR-223-3p. RESULTS: Serum MAGI2-AS3 expression was decreased in patients with delayed fracture healing compared with patients with normal healing. Elevated MAGI2-AS3 resulted in an upregulation of the proliferative capacity of MC3T3-E1 cells and a decrease in mortality, along with increased levels of both osteogenic markers. However, after transfection silencing MAGI2-AS3, the trend was reversed. Additionally, miR-223-3p was the downstream target of MAGI2-AS3 and was controlled by MAGI2-AS3. miR-223-3p mimic reversed the promoting effects of MAGI2-AS3 overexpression on osteogenic marker levels and cell growth, and induced cell apoptosis. CONCLUSION: The upregulation of MAGI2-AS3 may expedite the healing of fracture patients by targeting miR-223-3p, offering a novel biomarker for diagnosing patients with delayed healing.


Assuntos
Regulação para Baixo , Consolidação da Fratura , MicroRNAs , RNA Longo não Codificante , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Consolidação da Fratura/genética , Consolidação da Fratura/fisiologia , MicroRNAs/genética , Osteogênese/genética , RNA Longo não Codificante/genética
12.
J Med Chem ; 67(11): 8988-9027, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38770784

RESUMO

Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of 36. Compound 36 is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (5), indicating that 36 may have lower EGFR wild-type associated toxicity.


Assuntos
Receptores ErbB , Éxons , Inibidores de Proteínas Quinases , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Mutagênese Insercional , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação
14.
Heliyon ; 10(8): e29344, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681584

RESUMO

Several types of non-coding RNAs such as circRNAs, lncRNAs, and miRNAs have been identified to regulate mRNAs through the mechanism known as the competitive endogenous RNA (ceRNA) network. To explore the role of the ceRNA regulatory network in the immune microenvironment of bladder cancer, whole-transcriptome sequencing of bladder tumor and its peritumoral tissues from 38 bladder cancer patients, with a total of 63 samples, was performed to screen differentially expressed circ-, lnc-, mi-, and mRNAs to construct a circ/lnc-mi-mRNA regulatory network with pruning algorithms. We excavated a key immune-related gene BDNF to build the final ceRNA network as hsa-miR-107 sponged by hsa-circ-000211, AC108488.1, and LINC00163. Finally, a meta-analysis of 7 public datasets demonstrated that low expression of BDNF and high expression of hsa-miR-107 were associated with longer survival. Our study identified a ceRNA regulatory network as a potentially new prognostic marker and molecular therapeutic target of bladder cancer.

15.
J Cancer ; 15(9): 2486-2504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577605

RESUMO

PANoptosis is a newly described inflammatory programmed cell death, that highlights coordination between pyroptosis, apoptosis and necroptosis. However, the functions of PANoptosis-related genes in glioma progression still remain to be explored. This study aims to identify PANoptosis-related predictors that may be utilized for prognosis prediction and development of new therapeutic targets. Firstly, bulk and single-cell RNA-seq (scRNA-seq) data of glioma patients were extracted from TCGA, CGGA and GEO database. Genetic analysis indicates a considerably high mutation frequency of PANoptosis-related genes (PANRGs) in glioma. Consensus clustering was applied to reveal different subtypes of glioma based on PANRGs. Two PANoptosis subtypes with distinct prognostic and TME characteristics were identified. Then, with LASSO-Cox regression analysis, four PANoptosis-related predictors (MYBL2, TUBA1C, C21orf62 and KCNIP2) were determined from bulk and scRNA-seq analysis. Predictive PANRG score model was established with these predictors and its correlation with tumor microenvironment (TME) was investigated. The results showed that patients with low PANRG score, had higher infiltration of anti-tumor immune cells, higher MSI score and lower TIDE score, which are more likely to benefit from immunotherapy. Further analysis identified 16 potential drugs associated with PANoptosis-related predictors. Moreover, the expression levels of four PANoptosis-related predictors were examined in clinical samples and the results were consistent with those analyzed in the database. Besides, we also confirmed the biological functions of two oncogenic predictors (MYBL2 and TUBA1C) by cell experiments, which revealed that knockdown of MYBL2 or TUBA1C could significantly inhibit the proliferation and migration of glioma cells. These findings highlight the prognostic value and biological functions of PANRGs in glioma, which may provide valuable insights for individualized treatment.

16.
Comput Struct Biotechnol J ; 23: 843-858, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38352937

RESUMO

Cerebral cavernous malformation (CCM) is a polygenic disease with intricate genetic interactions contributing to quantitative pathogenesis across multiple factors. The principal pathogenic genes of CCM, specifically KRIT1, CCM2, and PDCD10, have been reported, accompanied by a growing wealth of genetic data related to mutations. Furthermore, numerous other molecules associated with CCM have been unearthed. However, tackling such massive volumes of unstructured data remains challenging until the advent of advanced large language models. In this study, we developed an automated analytical pipeline specialized in single nucleotide variants (SNVs) related biomedical text analysis called BRLM. To facilitate this, BioBERT was employed to vectorize the rich information of SNVs, while a deep residue network was used to discriminate the classes of the SNVs. BRLM was initially constructed on mutations from 12 different types of TCGA cancers, achieving an accuracy exceeding 99%. It was further examined for CCM mutations in familial sequencing data analysis, highlighting an upstream master regulator gene fibroblast growth factor 1 (FGF1). With multi-omics characterization and validation in biological function, FGF1 demonstrated to play a significant role in the development of CCMs, which proved the effectiveness of our model. The BRLM web server is available at http://1.117.230.196.

17.
Environ Sci Pollut Res Int ; 31(13): 20311-20329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369662

RESUMO

The synthesis of iron-based nanoparticles (Fe NPs) using traditional preparation methods suffered from the disadvantages of high cost, environmental harm, and easy agglomeration. In this study, a novel eco-friendly method was proposed for the synthesis of iron nanomaterials (ML-Fe NPs): using antioxidant components extracted from mulberry leaf to reduce divalent iron (II). The preparation conditions of ML-Fe NPs were optimized by orthogonal tests. The prepared ML-Fe NPs exhibited an amorphous core-shell structure, displaying excellent dispersion and stability. During the synthesis process of ML-Fe NPs, the polyphenol molecules in mulberry leaf extract played a dominant role. A possible synthetic mechanism involving complexation, reduction, and encapsulation was proposed. Furthermore, the ML-Fe NPs were utilized to construct an ML-Fe NPs/peroxymonosulfate catalytic system for the degradation of Rhodamine B dye wastewater. The ML-Fe NPs demonstrated remarkable catalytic potential, achieving a 99% degradation efficiency for Rhodamine B within a span of 40 min.


Assuntos
Nanopartículas Metálicas , Morus , Nanopartículas , Ferro/química , Extratos Vegetais/química , Nanopartículas/química , Águas Residuárias , Nanopartículas Metálicas/química
18.
Mol Biol Rep ; 51(1): 196, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270719

RESUMO

Due to its role in apoptosis, differentiation, cell cycle arrest, and DNA damage repair in stress responses (oxidative stress, hypoxia, chemotherapeutic drugs, and UV irradiation or radiotherapy), FOXO3a is considered a key tumor suppressor that determines radiotherapeutic and chemotherapeutic responses in cancer cells. Mutations in the FOXO3a gene are rare, even in cancer cells. Post-translational regulations are the main mechanisms for inactivating FOXO3a. The subcellular localization, stability, transcriptional activity, and DNA binding affinity for FOXO3a can be modulated via various post-translational modifications, including phosphorylation, acetylation, and interactions with other transcriptional factors or regulators. This review summarizes how proteins that interact with FOXO3a engage in cancer progression.


Assuntos
Proteína Forkhead Box O3 , Neoplasias , Humanos , Acetilação , Apoptose , Diferenciação Celular , Neoplasias/genética , Fatores de Transcrição , Proteína Forkhead Box O3/genética
20.
BMC Pulm Med ; 23(1): 511, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102594

RESUMO

BACKGROUND: Immunogenic cell death (ICD) stimulates adaptive immunity and holds significant promise in cancer therapy. Nevertheless, the influence of ICD-associated long non-coding RNAs (lncRNAs) on the prognosis of patients with lung squamous cell carcinoma (LUSC) remains unexplored. METHODS: We employed data from the The Cancer Genome Atlas (TCGA)database to identify ICD-related lncRNAs associated with the prognosis of LUSC using univariate Cox regression analysis. Subsequently, we utilized the LOSS regression model to construct a predictive risk model for assessing the prognosis of LUSC patients based on ICD-related lncRNAs. Our study randomly allocated187 TCGA patients into a training group and 184 patients for testing the predictive model. Furthermore, we conducted quantitative polymerase chain reaction (qPCR) analysis on 43 tumor tissues from LUSC patients to evaluate lncRNA expression levelsPearson correlation analysis was utilized to analyze the correlation of risk scores with positron emission tomography/computed tomography (PET/CT) parameters among LUSC patients. RESULTS: The findings from the univariate Cox regression revealed 16 ICD-associated lncRNAs linked to LUSC prognosis, with 12 of these lncRNAs integrated into our risk model utilizing the LOSS regression. Survival analysis indicated a markedly higher overall survival time among patients in the low-risk group compared to those in the high-risk group. The area under the Receiver operating characteristic (ROC) curve to differentiate high-risk and low-risk patients was 0.688. Additionally, the overall survival rate was superior in the low-risk group compared to the high-risk group. Correlation analysis demonstrated a positive association between the risk score calculated based on the ICD-lncRNA risk model and the maximum standard uptake value (SUVmax) (r = 0.427, P = 0.0043) as well as metabolic volume (MTV)of PET-CT (r = 0.360, P = 0.0177) in 43 LUSC patients. CONCLUSION: We have successfully developed a risk model founded on ICD-related lncRNAs that proves effective in predicting the overall survival of LUSC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Morte Celular Imunogênica , Regulação Neoplásica da Expressão Gênica , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/patologia , Prognóstico , Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA