Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 44: 228-235, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28628804

RESUMO

Sleep homeostasis is a fundamental property of vigilance state regulation that is highly conserved across species. Neuronal systems and circuits that underlie sleep homeostasis are not well understood. In Drosophila, a neuronal circuit involving neurons in the ellipsoid body and in the dorsal Fan-shaped body is a candidate for both tracing sleep need during waking and translating it to increased sleep drive and expression. Sleep homeostasis in rats and mice involves multiple neuromodulators acting on multiple wake- and sleep-promoting neuronal systems. A functional central homeostat emerges from A1 receptor mediated actions of adenosine on wake-promoting neurons in the basal forebrain and hypothalamus, and A2A adenosine receptor-mediated actions on sleep-promoting neurons in the preoptic hypothalamus and nucleus accumbens.


Assuntos
Homeostase/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Adenosina/metabolismo , Animais , Vigília/fisiologia
2.
Science ; 324(5923): 105-8, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19342592

RESUMO

Sleep is important for memory consolidation and is responsive to waking experience. Clock circuitry is uniquely positioned to coordinate interactions between processes underlying memory and sleep need. Flies increase sleep both after exposure to an enriched social environment and after protocols that induce long-term memory. We found that flies mutant for rutabaga, period, and blistered were deficient for experience-dependent increases in sleep. Rescue of each of these genes within the ventral lateral neurons (LNVs) restores increased sleep after social enrichment. Social experiences that induce increased sleep were associated with an increase in the number of synaptic terminals in the LNV projections into the medulla. The number of synaptic terminals was reduced during sleep and this decline was prevented by sleep deprivation.


Assuntos
Drosophila melanogaster/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Sono/fisiologia , Sinapses/fisiologia , Adenilil Ciclases/genética , Adenilil Ciclases/fisiologia , Animais , Relógios Biológicos/genética , Encéfalo/fisiologia , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Genes de Insetos , Masculino , Memória , Modelos Animais , Mutação , Neurônios/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas Circadianas Period , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/fisiologia , Privação do Sono , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA