Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38695618

RESUMO

Emerging evidence in preclinical models demonstrates that antitumor immunity is not equivalent between males and females. However, more investigation in patients and across a wider range of cancer types is needed to fully understand sex as a variable in tumor immune responses. We investigated differences in T-cell responses between male and female patients with lung cancer by performing sex-based analysis of single cell transcriptomic datasets. We found that the transcript encoding CXC motif chemokine ligand 13 (CXCL13), which has recently been shown to correlate with T-cell tumor specificity, is expressed at greater levels in T cells isolated from female compared to male patients. Furthermore, increased expression of CXCL13 was associated with response to PD-1-targeting immunotherapy in female but not male patients. These findings suggest that there are sex-based differences in T-cell function required for response to anti-PD-1 therapy in lung cancer that may need to be considered during patient treatment decisions.

2.
Cancer Immunol Immunother ; 72(2): 397-408, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35907015

RESUMO

Checkpoint blockade immunotherapy has become a first-line treatment option for cancer patients, with success in increasingly diverse cancer types. Still, many patients do not experience durable responses and the reasons for clinical success versus failure remain largely undefined. Investigation of immune responses within the tumor microenvironment can be highly informative but access to tumor tissue is not always available, highlighting the need to identify biomarkers in the blood that correlate with clinical success. Here, we used single-cell RNA sequencing coupled with T cell receptor sequencing to define CD8+ T cell responses in peripheral blood of two patients with melanoma before and after immunotherapy with either anti-PD-1 (nivolumab) alone or the combination of anti-PD-1 and CTLA-4 (ipilimumab). Both treatment regimens increased transcripts associated with cytolytic effector function and decreased transcripts associated with naive T cells. These responses were further evaluated at the protein level and extended to a total of 53 patients with various cancer types. Unexpectedly, the induction of CD8+ T cell responses associated with cytolytic function was variable and did not predict therapeutic success in this larger patient cohort. Rather, a decrease in the frequency of T cells with a naive-like phenotype was consistently observed after immunotherapy and correlated with prolonged patient survival. In contrast, a more detailed clonotypic analysis of emerging and expanding CD8+ T cells in the blood revealed that a majority of individual T cell clones responding to immunotherapy acquired a transcriptional profile consistent with cytolytic effector function. These results suggest that responses to checkpoint blockade immunotherapy are evident and traceable in patients' blood, with outcomes predicted by the simultaneous loss of naive-like CD8+ T cells and the expansion of mostly rare and diverse cytotoxic CD8+ T cell clones.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Imunoterapia/métodos , Análise de Célula Única , Microambiente Tumoral
4.
Cancer Immunol Res ; 9(2): 214-226, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303575

RESUMO

Antitumor immunity is impaired in obese mice. Mechanistic insight into this observation remains sparse and whether it is recapitulated in patients with cancer is unclear because clinical studies have produced conflicting and controversial findings. We addressed this by analyzing data from patients with a diverse array of cancer types. We found that survival after immunotherapy was not accurately predicted by body mass index or serum leptin concentrations. However, oxidized low-density lipoprotein (ox-LDL) in serum was identified as a suppressor of T-cell function and a driver of tumor cytoprotection mediated by heme oxygenase-1 (HO-1). Analysis of a human melanoma gene expression database showed a clear association between higher HMOX1 (HO-1) expression and reduced progression-free survival. Our in vivo experiments using mouse models of both melanoma and breast cancer revealed HO-1 as a mechanism of resistance to anti-PD1 immunotherapy but also exposed HO-1 as a vulnerability that could be exploited therapeutically using a small-molecule inhibitor. In conclusion, our clinical data have implicated serum ox-LDL as a mediator of therapeutic resistance in patients with cancer, operating as a double-edged sword that both suppressed T-cell immunity and simultaneously induced HO-1-mediated tumor cell protection. Our studies also highlight the therapeutic potential of targeting HO-1 during immunotherapy, encouraging further translational development of this combination approach.See article by Kuehm et al., p. 227.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Heme Oxigenase-1/sangue , Lipoproteínas LDL/sangue , Melanoma/tratamento farmacológico , Obesidade/sangue , Animais , Antineoplásicos Imunológicos/uso terapêutico , Índice de Massa Corporal , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Ipilimumab/uso terapêutico , Estimativa de Kaplan-Meier , Modelos Lineares , Masculino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/complicações , Obesidade/fisiopatologia , Estudos Retrospectivos
5.
Cancer Immunol Res ; 9(2): 227-238, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023966

RESUMO

Checkpoint blockade immunotherapy relies on the empowerment of the immune system to fight cancer. Why some patients fail to achieve durable clinical responses is not well understood, but unique individual factors such as diet, obesity, and related metabolic syndrome could play a role. The link between obesity and patient outcomes remains controversial and has been mired by conflicting reports and limited mechanistic insight. We addressed this in a C57BL/6 mouse model of diet-induced obesity using a Western diet high in both fats and sugars. Obese mice bearing B16 melanoma or MC38 carcinoma tumors had impaired immune responses to immunotherapy and a reduced capacity to control tumor progression. Unexpectedly, these compromised therapeutic outcomes were independent of body mass and, instead, were directly attributed to dietary fructose. Melanoma tumors in mice on the high-fructose diet were resistant to immunotherapy and showed increased expression of the cytoprotective enzyme heme oxygenase-1 (HO-1). This increase in HO-1 protein was recapitulated in human A375 melanoma cells exposed to fructose in culture. Induced expression of HO-1 shielded tumor cells from immune-mediated killing and was critical for resistance to checkpoint blockade immunotherapy, which could be overcome in vivo using a small-molecule inhibitor of HO-1. This study reveals dietary fructose as a driver of tumor immune evasion, identifying HO-1 expression as a mechanism of resistance and a promising molecular target for combination cancer immunotherapy.See article by Khojandi et al., p. 214.


Assuntos
Citoproteção , Resistencia a Medicamentos Antineoplásicos , Frutose/metabolismo , Neoplasias/metabolismo , Evasão Tumoral , Animais , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma , Linhagem Celular Tumoral , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico
6.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848271

RESUMO

Cryptococcus neoformans can cause fatal meningoencephalitis in patients with AIDS or other immunocompromising conditions. Current antifungals are suboptimal to treat this disease; therefore, novel targets and new therapies are needed. Previously, we have shown that chitosan is a critical component of the cryptococcal cell wall and is required for survival in the mammalian host and that chitosan deficiency results in rapid clearance from the mammalian host. We had also identified several specific proteins that were required for chitosan biosynthesis, and we hypothesize that screening for compounds that inhibit chitosan biosynthesis would identify additional genes/proteins that influence chitosan biosynthesis. To identify these compounds, we developed a robust and novel cell-based flow cytometry screening method to identify small-molecule inhibitors of chitosan production. We screened the ICCB Known Bioactives library and identified 8 compounds that reduced chitosan in C. neoformans We used flow cytometry-based counterscreens and confirmatory screens, followed by a biochemical secondary screen to refine our primary screening hits to 2 confirmed hits. One of the confirmed hits that reduced chitosan content was the aminoalkylindole BML-190, a known inverse agonist of mammalian cannabinoid receptors. We demonstrated that BML-190 likely targets the C. neoformans G-protein-coupled receptor Gpr4 and, via the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, contributes to an intracellular accumulation of cAMP that results in decreased chitosan. Our discovery suggests that this approach could be used to identify additional compounds and pathways that reduce chitosan biosynthesis and could lead to potential novel therapeutics against C. neoformansIMPORTANCECryptococcus neoformans is a fungal pathogen that kills ∼200,000 people every year. The cell wall is an essential organelle that protects fungi from the environment. Chitosan, the deacetylated form of chitin, has been shown to be an essential component of the cryptococcal cell wall during infection of a mammalian host. In this study, we screened a set of 480 compounds, which are known to have defined biological activities, for activity that reduced chitosan production in C. neoformans Two of these compounds were confirmed using an alternative method of measuring chitosan, and one of these was demonstrated to impact the cAMP signal transduction pathway. This work demonstrates that the cAMP pathway regulates chitosan biosynthesis in C. neoformans and validates that this screening approach could be used to find potential antifungal agents.


Assuntos
Quitosana/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Indometacina/análogos & derivados , Modelos Biológicos , Morfolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fenômenos Químicos , Descoberta de Drogas , Indometacina/química , Indometacina/farmacologia , Estrutura Molecular , Morfolinas/química , Receptores Acoplados a Proteínas G/metabolismo
7.
RSC Adv ; 9(59): 34227-34234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33042521

RESUMO

Here we describe a rapid and divergent synthetic route toward structurally novel αHTs functionalized with either one or two thioether or sulfonyl appendages. Evaluation of this library against hepatitis B and herpes simplex virus, as well as the pathogenic fungus Cryptococcus neoformans, and a human hepatoblastoma (HepDES19) revealed complementary biological profiles and new lead compounds with sub-micromolar activity against each pathogen.

8.
ACS Omega ; 3(11): 15125-15133, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30533576

RESUMO

Novel antibiotics are urgently needed. The troponoids [tropones, tropolones, and α-hydroxytropolones (α-HT)] can have anti-bacterial activity. We synthesized or purchased 92 troponoids and evaluated their antibacterial activities against Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Preliminary hits were assessed for minimum inhibitory concentrations (MIC80) and cytotoxicity (CC50) against human hepatoma cells. Sixteen troponoids inhibited S. aureus/E. coli/A. baumannii growth by ≥80% growth at <30 µM with CC50 values >50 µM. Two selected tropolones (63 and 285) inhibited 18 methicillin-resistant S. aureus (MRSA) strains with similar MIC80 values as against a reference strain. Two selected thiotropolones (284 and 363) inhibited multidrug-resistant (MDR) E. coli with MIC80 ≤30 µM. One α-HT (261) inhibited MDR-A. baumannii with MIC80 ≤30 µM. This study opens new avenues for development of novel troponoid antibiotics to address the critical need to combat MDR bacterial infections.

9.
Artigo em Inglês | MEDLINE | ID: mdl-28167553

RESUMO

Cryptococcus neoformans is a pathogen that is common in immunosuppressed patients. It can be treated with amphotericin B and fluconazole, but the mortality rate remains 15 to 30%. Thus, novel and more effective anticryptococcal therapies are needed. The troponoids are based on natural products isolated from western red cedar, and have a broad range of antimicrobial activities. Extracts of western red cedar inhibit the growth of several fungal species, but neither western red cedar extracts nor troponoid derivatives have been tested against C. neoformans We screened 56 troponoids for their ability to inhibit C. neoformans growth and to assess whether they may be attractive candidates for development into anticryptococcal drugs. We determined MICs at which the compounds inhibited 80% of cryptococcal growth relative to vehicle-treated controls and identified 12 compounds with MICs ranging from 0.2 to 15 µM. We screened compounds with MICs of ≤20 µM for cytotoxicity in liver hepatoma cells. Fifty percent cytotoxicity values (CC50s) ranged from 4 to >100 µM. The therapeutic indexes (TI, CC50/MIC) for most of the troponoids were fairly low, with most being <8. However, two compounds had TI values that were >8, including a tropone with a TI of >300. These tropones are fungicidal and are not antagonistic when used in combination with fluconazole or amphotericin B. Inhibition by these two tropones remains unchanged under conditions favoring cryptococcal capsule formation. These data support the hypothesis that troponoids may be a productive scaffold for the development of novel anticryptococcal therapies.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Anfotericina B/farmacologia , Cryptococcus neoformans/crescimento & desenvolvimento , Fluconazol/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Tropolona/farmacologia
10.
Antiviral Res ; 135: 24-30, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27693161

RESUMO

Hepatitis B virus (HBV) causes hepatitis, cirrhosis, liver failure, and liver cancer, but the current therapies that employ either nucelos(t)ide analogs or (pegylated)interferon α do not clear the infection in the large majority of patients. Inhibitors of the HBV ribonuclease H (RNaseH) that are being developed with the goal of producing anti-HBV drugs are promising candidates for use in combination with the nucleos(t)ide analogs to improve therapeutic efficacy. HBV is genetically very diverse, with at least 8 genotypes that differ by ≥8% at the sequence level. This diversity is reflected in the viral RNaseH enzyme, raising the possibility that divergent HBV genotypes or isolates may have varying sensitivity to RNaseH inhibitors. To evaluate this possibility, we expressed and purified 18 patient-derived RNaseHs from genotypes B, C, and D. Basal RNaseH activity and sensitivity to three novel RNaseH inhibitors from three different chemotypes were assessed. We also evaluated four consensus HBV RNaseHs to determine if such sequences would be suitable for use in antiviral drug screening. The patient-derived enzymes varied by over 10-fold in their basal RNaseH activities, but they were equivalently sensitive to each of the three inhibitors. Similarly, all four consensus HBV RNaseH enzymes were active and were equally sensitive to an RNaseH inhibitor. These data indicate that a wide range of RNaseH sequences would be suitable for use in antiviral drug screening, and that genotype- or isolate-specific genetic variations are unlikely to present a barrier during antiviral drug development against the HBV RNaseH.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Variação Genética , Vírus da Hepatite B/genética , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Avaliação Pré-Clínica de Medicamentos , Genótipo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Hepatite B Crônica/tratamento farmacológico , Humanos , Ribonuclease H/genética , Replicação Viral/efeitos dos fármacos
11.
PLoS One ; 10(4): e0123561, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25893662

RESUMO

HIV-1 protease (PR) is a viral enzyme vital to the production of infectious virions. It is initially synthesized as part of the Gag-Pol polyprotein precursor in the infected cell. The free mature PR is liberated as a result of precursor autoprocessing upon virion release. We previously described a model system to examine autoprocessing in transfected mammalian cells. Here, we report that a covariance analysis of miniprecursor (p6*-PR) sequences derived from drug naïve patients identified a series of amino acid pairs that vary together across independent viral isolates. These covariance pairs were used to build the first topology map of the miniprecursor that suggests high levels of interaction between the p6* peptide and the mature PR. Additionally, several PR-PR covariance pairs are located far from each other (>12 Å Cα to Cα) relative to their positions in the mature PR structure. Biochemical characterization of one such covariance pair (77-93) revealed that each residue shows distinct preference for one of three alkyl amino acids (V, I, and L) and that a polar or charged amino acid at either of these two positions abolishes precursor autoprocessing. The most commonly observed 77V is preferred by the most commonly observed 93I, but the 77I variant is preferred by other 93 variances (L, V, or M) in supporting precursor autoprocessing. Furthermore, the 77I93V covariant enhanced precursor autoprocessing and Gag polyprotein processing but decreased the mature PR activity. Therefore, both covariance and biochemical analyses support a functional association between residues 77 and 93, which are spatially distant from each other in the mature PR structure. Our data also suggests that these covariance pairs differentially regulate precursor autoprocessing and the mature protease activity.


Assuntos
Aminoácidos/metabolismo , Protease de HIV/química , Protease de HIV/metabolismo , HIV-1/enzimologia , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Darunavir/farmacologia , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
12.
Cancer Immunol Res ; 3(2): 116-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25516478

RESUMO

Coinhibitory receptor blockade is a promising strategy to boost T-cell immunity against a variety of human cancers. However, many patients still do not benefit from this treatment, and responders often experience immune-related toxicities. These issues highlight the need for advanced mechanistic understanding to improve patient outcomes and uncover clinically relevant biomarkers of treatment efficacy. However, the T-cell-intrinsic signaling pathways engaged during checkpoint blockade treatment are not well defined, particularly for combination approaches. Using a murine model to study how effector CD8(+) T-cell responses to tumors may be enhanced in a tolerizing environment, we identified a critical role for the T-box transcription factor T-bet. Combination blockade of CTLA-4, PD-1, and LAG-3 induced T-bet expression in responding tumor/self-reactive CD8(+) T cells. Eradication of established leukemia using this immunotherapy regimen depended on T-bet induction, which was required for IFNγ production and cytotoxicity by tumor-infiltrating T cells, and for efficient trafficking to disseminated tumor sites. These data provide new insight into the success of checkpoint blockade for cancer immunotherapy, revealing T-bet as a key transcriptional regulator of tumor-reactive CD8(+) T-cell effector differentiation under otherwise tolerizing conditions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Proteínas com Domínio T/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Tolerância Imunológica/imunologia , Leucemia Experimental/genética , Leucemia Experimental/imunologia , Leucemia Experimental/terapia , Camundongos Transgênicos , Transplante de Neoplasias
13.
mBio ; 5(4)2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25118241

RESUMO

UNLABELLED: Cryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis of C. neoformans, and biosynthesis and repair of the wall is primarily controlled by the cell wall integrity (CWI) signaling pathway. Previous work has shown that deletion of genes encoding the four major kinases in the CWI signaling pathway, namely, PKC1, BCK1, MKK2, and MPK1 results in severe cell wall phenotypes, sensitivity to a variety of cell wall stressors, and for Mpk1, reduced virulence in a mouse model. Here, we examined the global transcriptional responses to gene deletions of BCK1, MKK2, and MPK1 compared to wild-type cells. We found that over 1,000 genes were differentially expressed in one or more of the deletion strains, with 115 genes differentially expressed in all three strains, many of which have been identified as genes regulated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Biochemical measurements of cAMP levels in the kinase deletion strains revealed significantly less cAMP in all of the deletion strains compared to the wild-type strain. The deletion strains also produced significantly smaller capsules than the wild-type KN99 strain did under capsule-inducing conditions, although the levels of capsule they shed were similar to those shed by the wild type. Finally, addition of exogenous cAMP led to reduced sensitivity to cell wall stress and restored surface capsule to levels near those of wild type. Thus, we have direct evidence of cross talk between the CWI and cAMP/PKA pathways that may have important implications for regulation of cell wall and capsule homeostasis. IMPORTANCE: Cryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis of C. neoformans, and biosynthesis and repair of the wall are primarily controlled by the cell wall integrity (CWI) signaling pathway. In this study, we demonstrate that deletion of any of three core kinases in the CWI pathway impacts not only the cell wall but also the amount of surface capsule. Deletion of any of the kinases results in significantly reduced cellular cyclic AMP (cAMP) levels, and addition of exogenous cAMP rescues the capsule defect and some cell wall defects, supporting a direct role for the CWI pathway in regulation of capsule in conjunction with the cAMP/protein kinase A pathway.


Assuntos
Parede Celular/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Parede Celular/genética , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Cápsulas Fúngicas/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica
14.
PLoS One ; 9(7): e103748, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25079603

RESUMO

Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV's sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/genética , Hepatite C Crônica/virologia , Neoplasias Hepáticas/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Sequência de Bases , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Sequência Consenso , Progressão da Doença , Feminino , Variação Genética , Genoma Viral , Hepatite C Crônica/patologia , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
J Leukoc Biol ; 96(3): 397-410, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24823810

RESUMO

CD8(+) T cells must detect foreign antigens and differentiate into effector cells to eliminate infections. But, when self-antigen is recognized instead, mechanisms of peripheral tolerance prevent acquisition of effector function to avoid autoimmunity. These distinct responses are influenced by inflammatory and regulatory clues from the tissue environment, but the mechanism(s) by which naive T cells interpret these signals to generate the appropriate immune response are unclear. The identification of the molecules operative in these cell-fate decisions is crucial for developing new treatment options for patients with cancer or autoimmunity, where manipulation of T cell activity is desired to alter the course of disease. With the use of an in vivo murine model to examine CD8(+) T cell responses to healthy self-tissue, we correlated self-tolerance with a failure to induce the T-box transcription factors T-bet and Eomes. However, inflammation associated with acute microbial infection induced T-bet and Eomes expression and promoted effector differentiation of self-reactive T cells under conditions that normally favor tolerance. In the context of a Listeria infection, these functional responses relied on elevated T-bet expression, independent of Eomes. Alternatively, infection with LCMV induced higher Eomes expression, which was sufficient in the absence of T-bet to promote effector cytokine production. Our results place T-box transcription factors at a molecular crossroads between CD8(+) T cell anergy and effector function upon recognition of peripheral self-antigen, and suggest that inflammation during T cell priming directs these distinct cellular responses.


Assuntos
Deleção Clonal/imunologia , Inflamação/imunologia , Tolerância a Antígenos Próprios/imunologia , Proteínas com Domínio T/fisiologia , Linfócitos T/imunologia , Animais , Autoantígenos/imunologia , Diferenciação Celular , Linhagem Celular Tumoral , Anergia Clonal/imunologia , Citocinas/biossíntese , Citocinas/genética , Regulação da Expressão Gênica/imunologia , Genes RAG-1 , Imunização , Leucemia Eritroblástica Aguda/imunologia , Leucemia Eritroblástica Aguda/terapia , Listeria/imunologia , Listeriose/imunologia , Camundongos , Camundongos Knockout , Baço/imunologia , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Especificidade do Receptor de Antígeno de Linfócitos T
16.
Cancer Discov ; 4(6): 716-29, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24670723

RESUMO

UNLABELLED: Neoplastic cells rely on the tumor microenvironment (TME) for survival and progression factors. Indeed, senescent and cancer-associated fibroblasts (CAF) express factors that promote tumorigenesis that are collectively referred to as the senescence-associated secretory phenotype (SASP). Despite their importance in tumorigenesis, the mechanisms that control TME-derived factor expression remain poorly understood. Here, we address a key unanswered question: how the SASP is sustained in senescent fibroblasts and CAFs. We find that the mitogen-activated protein kinase p38 (p38MAPK) controls AUF1 occupancy on SASP mRNAs and thus controls their stability. The importance of this regulatory mechanism is underscored by our findings that stromal-specific p38MAPK inhibition abrogates the tumor-promoting activities of CAFs and senescent fibroblasts. Our data suggest that targeting SASP mRNA stability through inhibition of p38MAPK will significantly aid the development of clinical strategies to target the TME. SIGNIFICANCE: The TME plays a key role in tumorigenesis. We demonstrate that p38MAPK governs a posttranscriptional mechanism that sustains the protumorigenic SASP. Inhibition of p38MAPK abrogates the tumor-promoting activities of CAFs and senescent fibroblasts. Thus, p38MAPK is a TME-specific Achilles' heel that may be exploited as a new therapeutic target.


Assuntos
Fibroblastos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Senescência Celular , Feminino , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Humanos , Imidazóis/farmacologia , Lipopolissacarídeos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Fator de Necrose Tumoral alfa/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
J Infect Dis ; 207(8): 1306-15, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23335805

RESUMO

BACKGROUND: A major challenge for antiviral treatment of hepatitis C virus (HCV) infection is viral resistance, potentially resulting from the high variability of HCV envelope glycoproteins and subsequent selection of strains with enhanced infectivity and/or immune escape. METHODS: We used a bioinformatics and functional approach to investigate whether E1/E2 envelope glycoprotein structure and function were associated with treatment failure in 92 patients infected with HCV genotype 1. RESULTS: Bioinformatics analysis identified 1 sustain virological response (R)-related residue in E1 (219T) and 2 non-SVR (NR)-related molecular signatures in E2 (431A and 642V) in HCV genotype 1a. Two of these positions also appeared in minimal networks separating NR patients from R patients. HCV pseudoparticles (HCVpp) expressing 431A and 642V resulted in a decrease in antibody-mediated neutralization by pretreatment sera. 431A/HCVpp entry into Huh7.5 cells increased with overexpression of CD81 and SR-BI. Moreover, an association of envelope glycoprotein signatures with treatment failure was confirmed in an independent cohort (Virahep-C). CONCLUSIONS: Combined in silico and functional analyses demonstrate that envelope glycoprotein signatures associated with treatment failure result in an alteration of host cell entry factor use and escape from neutralizing antibodies, suggesting that virus-host interactions during viral entry contribute to treatment failure.


Assuntos
Biologia Computacional/métodos , Hepatite C/virologia , Proteínas do Envelope Viral/genética , Internalização do Vírus/efeitos dos fármacos , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Feminino , Genótipo , Células HEK293 , Hepacivirus/classificação , Hepacivirus/patogenicidade , Hepatite C/tratamento farmacológico , Hepatite C/imunologia , Humanos , Evasão da Resposta Imune , Masculino , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Mutação , Testes de Neutralização , Ribavirina/farmacologia , Relação Estrutura-Atividade , Falha de Tratamento , Proteínas do Envelope Viral/imunologia
18.
J Biol Chem ; 285(49): 38415-27, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20889977

RESUMO

Opioid receptor signaling via EGF receptor (EGFR) transactivation and ERK/MAPK phosphorylation initiates diverse cellular responses that are cell type-dependent. In astrocytes, multiple µ opioid receptor-mediated mechanisms of ERK activation exist that are temporally distinctive and feature different outcomes. Upon discovering that chronic opiate treatment of rats down-regulates thrombospondin 1 (TSP1) expression in the nucleus accumbens and cortex, we investigated the mechanism of action of this modulation in astrocytes. TSP1 is synthesized in astrocytes and is released into the extracellular matrix where it is known to play a role in synapse formation and neurite outgrowth. Acute morphine (hours) reduced TSP1 levels in astrocytes. Chronic (days) opioids repressed TSP1 gene expression and reduced its protein levels by µ opioid receptor and ERK-dependent mechanisms in astrocytes. Morphine also depleted TSP1 levels stimulated by TGFß1 and abolished ERK activation induced by this factor. Chronic morphine treatment of astrocyte-neuron co-cultures reduced neurite outgrowth and synapse formation. Therefore, inhibitory actions of morphine were detected after both acute and chronic treatments. An acute mechanism of morphine signaling to ERK that entails depletion of TSP1 levels was suggested by inhibition of morphine activation of ERK by a function-blocking TSP1 antibody. This raises the novel possibility that acute morphine uses TSP1 as a source of EGF-like ligands to activate EGFR. Chronic morphine inhibition of TSP1 is reminiscent of the negative effect of µ opioids on EGFR-induced astrocyte proliferation via a phospho-ERK feedback inhibition mechanism. Both of these variations of classical EGFR transactivation may enable opiates to diminish neurite outgrowth and synapse formation.


Assuntos
Astrócitos/metabolismo , Morfina/farmacologia , Entorpecentes/farmacologia , Neuritos/metabolismo , Sinapses/metabolismo , Trombospondina 1/biossíntese , Animais , Linhagem Celular Transformada , Proliferação de Células , Córtex Cerebral/metabolismo , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo
19.
PLoS One ; 5(2): e9032, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20140258

RESUMO

BACKGROUND: Hepatitis C virus (HCV) has six major genotypes, and patients infected with genotype 1 respond less well to interferon-based therapy than other genotypes. African American patients respond to interferon alpha-based therapy at about half the rate of Caucasian Americans. The effect of HCV's genetic variation on treatment outcome in both racial groups is poorly understood. METHODOLOGY: We determined the near full-length pre-therapy consensus sequences from 94 patients infected with HCV genotype 1a or 1b undergoing treatment with peginterferon alpha-2a and ribavirin through the Virahep-C study. The sequences were stratified by genotype, race and treatment outcome to identify HCV genetic differences associated with treatment efficacy. PRINCIPAL FINDINGS: HCV sequences from patients who achieved sustained viral response were more diverse than sequences from non-responders. These inter-patient diversity differences were found primarily in the NS5A gene in genotype 1a and in core and NS2 in genotype 1b. These differences could not be explained by host selection pressures. Genotype 1b but not 1a African American patients had viral genetic differences that correlated with treatment outcome. CONCLUSIONS & SIGNIFICANCE: Higher inter-patient viral genetic diversity correlated with successful treatment, implying that there are HCV genotype 1 strains with intrinsic differences in sensitivity to therapy. Core, NS3 and NS5A have interferon-suppressive activities detectable through in vitro assays, and hence these activities also appear to function in human patients. Both preferential infection with relatively resistant HCV variants and host-specific factors appear to contribute to the unusually poor response to therapy in African American patients.


Assuntos
Hepacivirus/genética , Hepatite C/tratamento farmacológico , Interferon-alfa/uso terapêutico , Polietilenoglicóis/uso terapêutico , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Antivirais/uso terapêutico , Quimioterapia Combinada , Feminino , Frequência do Gene , Variação Genética , Genoma Viral , Genótipo , Hepacivirus/classificação , Hepatite C/etnologia , Hepatite C/genética , Humanos , Interferon alfa-2 , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Filogenia , Proteínas Recombinantes , Ribavirina/uso terapêutico , Proteínas do Core Viral/genética , Proteínas não Estruturais Virais/genética , População Branca/estatística & dados numéricos
20.
J Clin Invest ; 119(1): 225-36, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19104147

RESUMO

Hepatitis C virus (HCV) is a common RNA virus that causes hepatitis and liver cancer. Infection is treated with IFN-alpha and ribavirin, but this expensive and physically demanding therapy fails in half of patients. The genomic sequences of independent HCV isolates differ by approximately 10%, but the effects of this variation on the response to therapy are unknown. To address this question, we analyzed amino acid covariance within the full viral coding region of pretherapy HCV sequences from 94 participants in the Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (Virahep-C) clinical study. Covarying positions were common and linked together into networks that differed by response to therapy. There were 3-fold more hydrophobic amino acid pairs in HCV from nonresponding patients, and these hydrophobic interactions were predicted to contribute to failure of therapy by stabilizing viral protein complexes. Using our analysis to detect patterns within the networks, we could predict the outcome of therapy with greater than 95% coverage and 100% accuracy, raising the possibility of a prognostic test to reduce therapeutic failures. Furthermore, the hub positions in the networks are attractive antiviral targets because of their genetic linkage with many other positions that we predict would suppress evolution of resistant variants. Finally, covariance network analysis could be applicable to any virus with sufficient genetic variation, including most human RNA viruses.


Assuntos
Antivirais , Redes Reguladoras de Genes , Variação Genética , Genoma Viral , Hepacivirus , Hepatite C , Adulto , Sequência de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios Clínicos como Assunto , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatite C/genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fases de Leitura Aberta , Fenótipo , Valor Preditivo dos Testes , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA