Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 23(1): 240, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978031

RESUMO

BACKGROUND: Metabolism is increasingly recognized as a key regulator of the function and phenotype of the primary cellular constituents of the atherosclerotic vascular wall, including endothelial cells, smooth muscle cells, and inflammatory cells. However, a comprehensive analysis of metabolic changes associated with the transition of plaque from a stable to a hemorrhaged phenotype is lacking. METHODS: In this study, we integrated two large mRNA expression and protein abundance datasets (BIKE, n = 126; MaasHPS, n = 43) from human atherosclerotic carotid artery plaque to reconstruct a genome-scale metabolic network (GEM). Next, the GEM findings were linked to metabolomics data from MaasHPS, providing a comprehensive overview of metabolic changes in human plaque. RESULTS: Our study identified significant changes in lipid, cholesterol, and inositol metabolism, along with altered lysosomal lytic activity and increased inflammatory activity, in unstable plaques with intraplaque hemorrhage (IPH+) compared to non-hemorrhaged (IPH-) plaques. Moreover, topological analysis of this network model revealed that the conversion of glutamine to glutamate and their flux between the cytoplasm and mitochondria were notably compromised in hemorrhaged plaques, with a significant reduction in overall glutamate levels in IPH+ plaques. Additionally, reduced glutamate availability was associated with an increased presence of macrophages and a pro-inflammatory phenotype in IPH+ plaques, suggesting an inflammation-prone microenvironment. CONCLUSIONS: This study is the first to establish a robust and comprehensive GEM for atherosclerotic plaque, providing a valuable resource for understanding plaque metabolism. The utility of this GEM was illustrated by its ability to reliably predict dysregulation in the cholesterol hydroxylation, inositol metabolism, and the glutamine/glutamate pathway in rupture-prone hemorrhaged plaques, a finding that may pave the way to new diagnostic or therapeutic measures.


Assuntos
Doenças das Artérias Carótidas , Ácido Glutâmico , Glutamina , Macrófagos , Redes e Vias Metabólicas , Fenótipo , Placa Aterosclerótica , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Ruptura Espontânea , Artérias Carótidas/patologia , Artérias Carótidas/metabolismo , Metabolômica , Bases de Dados Genéticas , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Metabolismo Energético , Conjuntos de Dados como Assunto , Masculino
2.
Front Immunol ; 14: 1165306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920458

RESUMO

Introduction: Inhibition of STAT5 was recently reported to reduce murine atherosclerosis. However, the role of STAT5 isoforms, and more in particular STAT5A in macrophages in the context of human atherosclerosis remains unknown. Methods and results: Here, we demonstrate reciprocal expression regulation of STAT5A and STAT5B in human atherosclerotic lesions. The former was highly upregulated in ruptured over stable plaque and correlated with macrophage presence, a finding that was corroborated by the high chromosomal accessibility of STAT5A but not B gene in plaque macrophages. Phosphorylated STAT5 correlated with macrophages confirming its activation status. As macrophage STAT5 is activated by GM-CSF, we studied the effects of its silencing in GM-CSF differentiated human macrophages. STAT5A knockdown blunted the immune response, phagocytosis, cholesterol metabolism, and augmented apoptosis terms on transcriptional levels. These changes could partially be confirmed at functional level, with significant increases in apoptosis and decreases in lipid uptake and IL-6, IL-8, and TNFa cytokine secretion after STAT5A knockdown. Finally, inhibition of general and isoform A specific STAT5 significantly reduced the secretion of TNFa, IL-8 and IL-10 in ex vivo tissue slices of advanced human atherosclerotic plaques. Discussion: In summary, we identify STAT5A as an important determinant of macrophage functions and inflammation in the context of atherosclerosis and show its promise as therapeutic target in human atherosclerotic plaque inflammation.


Assuntos
Aterosclerose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Transativadores/genética , Fator de Transcrição STAT5/metabolismo , Interleucina-8/metabolismo , Transdução de Sinais , Macrófagos , Aterosclerose/metabolismo , Inflamação/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Atherosclerosis ; 384: 117123, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37127497

RESUMO

BACKGROUND AND AIMS: This study aims to identify sex-specific transcriptional differences and signaling pathways in circulating monocytes contributing to cardiovascular disease. METHODS AND RESULTS: We generated sex-biased gene expression signatures by comparing male versus female monocytes of coronary artery disease (CAD) patients (n = 450) from the Center for Translational Molecular Medicine-Circulating Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from female CAD patients carry stronger chemotaxis and migratory signature than those from males. We then inferred cytokine signaling activities based on CytoSig database of 51 cytokine and growth factor regulation profiles. Monocytes from females feature a higher activation level of EGF, IFN1, VEGF, GM-CSF, and CD40L pathways, whereas IL-4, INS, and HMGB1 signaling was seen to be more activated in males. These sex differences were not observed in healthy subjects, as shown for an independent monocyte cohort of healthy subjects (GSE56034, n = 485). More pronounced GM-CSF signaling in monocytes of female CAD patients was confirmed by the significant enrichment of GM-CSF-activated monocyte signature in females. As we show these effects were not due to increased plasma levels of the corresponding ligands, sex-intrinsic differences in monocyte signaling regulation are suggested. Consistently, regulatory network analysis revealed jun-B as a shared transcription factor activated in all female-specific pathways except IFN1 but suppressed in male-activated IL-4. CONCLUSIONS: We observed overt CAD-specific sex differences in monocyte transcriptional profiles and cytokine- or growth factor-induced responses, which provide insights into underlying mechanisms of sex differences in CVD.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Masculino , Feminino , Monócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Caracteres Sexuais , Interleucina-4 , Citocinas/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108478

RESUMO

Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/complicações , Proteína ADAM17/metabolismo , Rim/metabolismo , Proteína ADAM10/metabolismo , Inflamação , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo
5.
Front Cardiovasc Med ; 10: 974918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776254

RESUMO

Introduction: The transmembrane protease A Disintegrin And Metalloproteinase 10 (ADAM10) displays a "pattern regulatory function," by cleaving a range of membrane-bound proteins. In endothelium, it regulates barrier function, leukocyte recruitment and angiogenesis. Previously, we showed that ADAM10 is expressed in human atherosclerotic plaques and associated with neovascularization. In this study, we aimed to determine the causal relevance of endothelial ADAM10 in murine atherosclerosis development in vivo. Methods and results: Endothelial Adam10 deficiency (Adam10 ecko ) in Western-type diet (WTD) fed mice rendered atherogenic by adeno-associated virus-mediated PCSK9 overexpression showed markedly increased atherosclerotic lesion formation. Additionally, Adam10 deficiency was associated with an increased necrotic core and concomitant reduction in plaque macrophage content. Strikingly, while intraplaque hemorrhage and neovascularization are rarely observed in aortic roots of atherosclerotic mice after 12 weeks of WTD feeding, a majority of plaques in both brachiocephalic artery and aortic root of Adam10ecko mice contained these features, suggestive of major plaque destabilization. In vitro, ADAM10 knockdown in human coronary artery endothelial cells (HCAECs) blunted the shedding of lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1) and increased endothelial inflammatory responses to oxLDL as witnessed by upregulated ICAM-1, VCAM-1, CCL5, and CXCL1 expression (which was diminished when LOX-1 was silenced) as well as activation of pro-inflammatory signaling pathways. LOX-1 shedding appeared also reduced in vivo, as soluble LOX-1 levels in plasma of Adam10ecko mice was significantly reduced compared to wildtypes. Discussion: Collectively, these results demonstrate that endothelial ADAM10 is atheroprotective, most likely by limiting oxLDL-induced inflammation besides its known role in pathological neovascularization. Our findings create novel opportunities to develop therapeutics targeting atherosclerotic plaque progression and stability, but at the same time warrant caution when considering to use ADAM10 inhibitors for therapy in other diseases.

6.
Cell Metab ; 34(8): 1214-1225.e6, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35858629

RESUMO

Cells often adopt different phenotypes, dictated by tissue-specific or local signals such as cell-cell and cell-matrix contacts or molecular micro-environment. This holds in extremis for macrophages with their high phenotypic plasticity. Their broad range of functions, some even opposing, reflects their heterogeneity, and a multitude of subsets has been described in different tissues and diseases. Such micro-environmental imprint cannot be adequately studied by single-cell applications, as cells are detached from their context, while histology-based assessment lacks the phenotypic depth due to limitations in marker combination. Here, we present a novel, integrative approach in which 15-color multispectral imaging allows comprehensive cell classification based on multi-marker expression patterns, followed by downstream analysis pipelines to link their phenotypes to contextual, micro-environmental cues, such as their cellular ("community") and metabolic ("local lipidome") niches in complex tissue. The power of this approach is illustrated for myeloid subsets and associated lipid signatures in murine atherosclerotic plaque.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/metabolismo , Biomarcadores/metabolismo , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Fenótipo
7.
Cardiovasc Res ; 118(13): 2768-2777, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34550346

RESUMO

Calcification is an independent predictor of atherosclerosis-related cardiovascular events. Microcalcification is linked to inflamed, unstable lesions, in comparison to the fibrotic stable plaque phenotype generally associated with advanced calcification. This paradox relates to recognition that calcification presents in a wide spectrum of manifestations that differentially impact plaque's fate. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a multifaceted role in disease progression. They crucially control the mineralization process, from microcalcification to the osteoid metaplasia of bone-like tissue. It is a bilateral interaction that weighs heavily on the overall plaque fate but remains rather unexplored. This review highlights current knowledge about macrophage phenotypic changes in relation to and interaction with the calcifying environment. On the one hand, macrophage-led inflammation kickstarts microcalcification through a multitude of interlinked mechanisms, which in turn stimulates phenotypic changes in vascular cell types to drive microcalcification. Macrophages may also modulate the expression/activity of calcification inhibitors and inducers, or eliminate hydroxyapatite nucleation points. Contrarily, direct exposure of macrophages to an early calcifying milieu impacts macrophage phenotype, with repercussions for plaque progression and/or stability. Macrophages surrounding macrocalcification deposits show a more reparative phenotype, modulating extracellular matrix, and expressing osteoclast genes. This phenotypic shift favours gradual displacement of the pro-inflammatory hubs; the lipid necrotic core, by macrocalcification. Parallels to bone metabolism may explain many of these changes to macrophage phenotype, with advanced calcification able to show homeostatic osteoid metaplasia. As the targeted treatment of vascular calcification developing in atherosclerosis is thus far severely lacking, it is crucial to better understand its mechanisms of development.


Assuntos
Aterosclerose , Placa Aterosclerótica , Calcificação Vascular , Humanos , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Calcificação Vascular/patologia , Lipídeos , Metaplasia/metabolismo , Metaplasia/patologia , Hidroxiapatitas/metabolismo
9.
Eur J Pharmacol ; 816: 14-24, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28989084

RESUMO

Macrophages are key players in atherosclerotic lesions, regulating the local inflammatory milieu and plaque stability by the secretion of many inflammatory molecules, growth factors and cytokines. Monocytes have long been considered to be the main source of plaque macrophages. However, recent findings provide evidence for proliferation of local macrophages or transdifferentiation from other vascular cells as alternative sources. Recent years of research focused on the further identification and characterisation of macrophage phenotypes and functions. In this review we describe the advances in our understanding of monocyte and macrophage heterogeneity and its implications for specific therapeutic interventions, aiming to reduce the ever growing significant risk of cardiovascular events without any detrimental side effects on the patient's immune response.


Assuntos
Macrófagos/citologia , Macrófagos/imunologia , Fenótipo , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/terapia , Animais , Humanos , Macrófagos/efeitos dos fármacos , Terapia de Alvo Molecular , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo
10.
Sci Rep ; 7(1): 11670, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916789

RESUMO

Although A Disintegrin And Metalloproteinase 8 (ADAM8) is not crucial for tissue development and homeostasis, it has been implicated in various inflammatory diseases by regulating processes like immune cell recruitment and activation. ADAM8 expression has been associated with human atherosclerosis development and myocardial infarction, however a causal role of ADAM8 in atherosclerosis has not been investigated thus far. In this study, we examined the expression of ADAM8 in early and progressed human atherosclerotic lesions, in which ADAM8 was significantly upregulated in vulnerable lesions. In addition, ADAM8 expression was most prominent in the shoulder region of human atherosclerotic lesions, characterized by the abundance of foam cells. In mice, Adam8 was highly expressed in circulating neutrophils and in macrophages. Moreover, ADAM8 deficient mouse macrophages displayed reduced secretion of inflammatory mediators. Remarkably, however, neither hematopoietic nor whole-body ADAM8 deficiency in mice affected atherosclerotic lesion size. Additionally, except for an increase in granulocyte content in plaques of ADAM8 deficient mice, lesion morphology was unaffected. Taken together, whole body and hematopoietic ADAM8 does not contribute to advanced atherosclerotic plaque development, at least in female mice, although its expression might still be valuable as a diagnostic/prognostic biomarker to distinguish between stable and unstable lesions.


Assuntos
Proteínas ADAM/análise , Proteínas ADAM/deficiência , Aterosclerose/fisiopatologia , Proteínas de Membrana/análise , Proteínas de Membrana/deficiência , Placa Aterosclerótica/patologia , Animais , Antígenos CD , Artérias Carótidas/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Macrófagos/química , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Cell Metab ; 26(1): 4-5, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28648982

RESUMO

Van der Vorst et al. underscore the relevance of HDL quality control, considering HDL source and processing, but argue that disease- or storage-associated structural modifications of HDL cannot explain the observed pro-inflammatory effects on macrophages. Discrepancies between reported effects of HDL in macrophages are probably related to methodological differences.


Assuntos
Inflamação/imunologia , Lipoproteínas HDL/imunologia , Macrófagos/imunologia , Animais , Humanos , Imunidade Inata , Macrófagos/química , Preservação Biológica , Projetos de Pesquisa
12.
Cell Metab ; 25(1): 197-207, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27866837

RESUMO

Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses.


Assuntos
Colesterol/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lipoproteínas HDL/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Humanos , Fator Regulador 1 de Interferon/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Fator de Transcrição STAT1/metabolismo , Receptores Toll-Like/metabolismo
13.
Atherosclerosis ; 255: 59-65, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27816810

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is a chronic inflammatory disease of medium and large vessels and is typically characterized by the predominant accumulation of low-density lipoprotein (LDL)-cholesterol inside macrophages that reside in the vessel walls. Previous studies clearly demonstrated an association specifically between the oxidized type of LDL (oxLDL) and atherosclerotic lesion formation. Further observations revealed that these atherosclerotic lesions displayed enlarged, lipid-loaded lysosomes. By increasing natural antibodies against oxLDL, pneumococcal vaccination has been shown to reduce atherosclerosis in LDL receptor knockout (Ldlr-/-) mice. Relevantly, loss of the lysosomal membrane protein Niemann-Pick Type C1 (NPC1) led to lysosomal accumulation of various lipids and promoted atherosclerosis. Yet, the importance of lysosomal oxLDL accumulation inside macrophages, compared to non-modified LDL, in atherosclerosis has never been established. METHODS: By transplanting NPC1 bone marrow into lethally irradiated Ldlr-/- mice, a hematopoietic mouse model for lysosomal cholesterol accumulation was created. Through injections with heat-inactivated pneumococci, we aimed to demonstrate the specific contribution of lysosomal oxLDL accumulation inside macrophages in atherosclerosis development. RESULTS: While there were no differences in plaque morphology, a reduction in plaque size and plaque inflammation was found in immunized NPC1mut-transplanted mice, compared to non-immunized NPC1mut-transplanted mice. CONCLUSIONS: Lysosomal oxLDL accumulation within macrophages contributes to murine atherosclerosis. Future intervention strategies should focus specifically on preventing oxLDL, unlike non-modified LDL, from being internalized into lysosomes. Such an intervention can have an additive effect to current existing treatments against atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Proteínas/metabolismo , Receptores de LDL/deficiência , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Transporte Biológico , Transplante de Medula Óssea , Colesterol/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína C1 de Niemann-Pick , Fenótipo , Placa Aterosclerótica , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Proteínas/genética , Receptores de LDL/genética , Streptococcus pneumoniae/imunologia , Irradiação Corporal Total
14.
PLoS One ; 11(9): e0162595, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27636705

RESUMO

Cathepsin K (catK) is a potent lysosomal cysteine protease involved in extracellular matrix (ECM) degradation and inflammatory remodeling responses. Here we have investigated the contribution of catK deficiency on carotid arterial remodeling in response to flow cessation in apoE-/- and wild type (wt) background. Ligation-induced hyperplasia is considerably aggravated in apoE-/- versus wt mice. CatK protein expression was significantly increased in neointimal lesions of apoE-/- compared with wt mice, suggesting a role for catK in intimal hyperplasia under hyperlipidemic conditions. Surprisingly, CatK deficiency completely blunted the augmented hyperplastic response to flow cessation in apoE-/-, whereas vascular remodeling in wt mice was unaffected. As catK deficiency did neither alter lesion collagen content and elastic laminae fragmentation in vivo, we focused on effects of catK on (systemic) inflammatory responses. CatK deficiency significantly reduced circulating CD3 T-cell numbers, but increased the regulatory T cell subset in apoE-/- but not wt mice. Moreover, catK deficiency changed CD11b+Ly6G-Ly6C high monocyte distribution in apoE-/- but not wt mice and tended to favour macrophage M2a polarization. In conclusion, catK deficiency almost completely blunted the increased vascular remodeling response of apoE-/- mice to flow cessation, possibly by correcting hyperlipidemia-associated pro-inflammatory effects on the peripheral immune response.


Assuntos
Apolipoproteínas E/genética , Catepsina K/metabolismo , Fluxo Sanguíneo Regional , Remodelação Vascular , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Arterioscler Thromb Vasc Biol ; 35(6): 1374-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25908768

RESUMO

OBJECTIVE: To investigate the roles and signaling pathways of CD40L and CD40 in platelet-platelet interactions and thrombus formation under conditions relevant for atherothrombosis. APPROACH AND RESULTS: Platelets from mice prone to atherosclerosis lacking CD40L (Cd40lg(-/-)Apoe(-/-)) showed diminished αIIbß3 activation and α-granule secretion in response to glycoprotein VI stimulation, whereas these responses of CD40-deficient platelets (Cd40(-/-)Apoe(-/-)) were not decreased. Using blood from Cd40lg(-/-)Apoe(-/-) and Cd40(-/-)Apoe(-/-) mice, the glycoprotein VI-dependent formation of dense thrombi was impaired on atherosclerotic plaque material or on collagen, in comparison with Apoe(-/-) blood. In all genotypes, addition of CD40L to the blood enhanced the growth of dense thrombi on plaques and collagen. Similarly, CD40L enhanced glycoprotein VI-induced platelet aggregation, even with platelets deficient in CD40. This potentiation was antagonized in Pik3cb(R/R) platelets or by inhibiting phosphatidylinositol 3-kinase ß (PI3Kß). Addition of CD40L also enhanced collagen-induced Akt phosphorylation, which was again antagonized by absence or inhibition of PI3Kß. Finally, platelets from Chuk1(A/A)Apoe(-/-) mice deficient in IκB kinase α (IKKα), implicated in CD40 signaling to nuclear factor (NF) κB, showed unchanged responses to CD40L in aggregation or thrombus formation. CONCLUSIONS: Under atherogenic conditions, CD40L enhances collagen-induced platelet-platelet interactions by supporting integrin αIIbß3 activation, secretion and thrombus growth via PI3Kß, but not via CD40 and IKKα/NFκB. This role of CD40L exceeds the no more than modest role of CD40 in thrombus formation.


Assuntos
Aterosclerose/metabolismo , Plaquetas/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Quinase I-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Trombose/metabolismo , Animais , Aterosclerose/patologia , Colágeno/metabolismo , Camundongos , Ativação Plaquetária , Transdução de Sinais , Trombose/patologia
16.
FEBS J ; 282(12): 2327-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25817537

RESUMO

Recent investigations have suggested that inflammasome activation plays an important role during atherosclerosis. Upon activation, the inflammasome induces processing and release of pro-inflammatory cytokines interleukin 1ß (IL-1ß) and interleukin 18 (IL-18) via activation of caspase-1/11. Previously, it was shown that complete caspase-1 deficiency is protective against atherosclerosis development. However, while macrophages are the main inflammatory cells involved in atherosclerosis, the exact role of macrophage-specific caspase-1/11 activation during development of cardiovascular disease has never been investigated. We hypothesized that hematopoietic caspase-1/11 deficiency leads to reduced atherosclerosis development. To investigate the specific contribution of hematopoietic caspase-1/11 activation to atherosclerosis development, Ldlr(-/-) mice received a transplant (tp) of wild-type (WT) or caspase-1/11(-/-) bone marrow, to create WT-tp mice and caspase-1/11(-/-) -tp mice, and fed a high-fat, high-cholesterol diet for 12 weeks. Our results showed an increase in anti-inflammatory blood leukocytes in caspase-1/11(-/-) -tp mice compared with WT-tp mice, as indicated by a decreased level of Ly6C(high) monocytes and an increased level of Ly6C(low) monocytes. In line with our hypothesis, hematopoietic deletion of caspase-1/11 resulted in a strong reduction in atherosclerotic plaque size. Furthermore, necrotic core content was dramatically decreased in caspase-1/11(-/-) -tp mice. Our data indicate that hematopoietic caspase-1/11 activation is involved in vascular inflammation and atherosclerosis, and plays an important role in cardiovascular disease progression.


Assuntos
Aorta Torácica/metabolismo , Aterosclerose/metabolismo , Caspase 1/metabolismo , Caspases/metabolismo , Leucócitos/metabolismo , Monócitos/metabolismo , Receptores de LDL/metabolismo , Animais , Antígenos Ly/sangue , Antígenos Ly/metabolismo , Aorta Torácica/imunologia , Aorta Torácica/patologia , Apoptose , Aterosclerose/etiologia , Aterosclerose/imunologia , Aterosclerose/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Caspase 1/genética , Caspases/genética , Caspases Iniciadoras , Colesterol na Dieta/efeitos adversos , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Feminino , Leucócitos/imunologia , Leucócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Necrose , Receptores de LDL/genética
17.
Am J Pathol ; 185(4): 1145-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659879

RESUMO

A disintegrin and metalloproteinase domain 10 (ADAM10) is a metalloprotease involved in cleavage of various cell surface molecules, such as adhesion molecules, chemokines, and growth factor receptors. Although we have previously shown an association of ADAM10 expression with atherosclerotic plaque progression, a causal role of ADAM10 in atherosclerosis has not been investigated. Bone marrow from conditional knockout mice lacking Adam10 in the myeloid lineage or from littermate controls was transplanted into lethally irradiated low density lipoprotein receptor Ldlr(-/-) mice on an atherogenic diet. Myeloid Adam10 deficiency did not affect plaque size, but it increased plaque collagen content. Matrix metalloproteinase 9 and 13 expression and matrix metalloproteinase 2 gelatinase activity were significantly impaired in Adam10-deficient macrophages, whereas their capacity to stimulate collagen production was unchanged. Furthermore, relative macrophage content in advanced atherosclerotic lesions was decreased. In vitro, Adam10-deficient macrophages showed reduced migration toward monocyte chemoattractant protein-1 and transmigration through collagen. In addition, Adam10-deficient macrophages displayed increased anti-inflammatory phenotype with elevated IL-10, and reduced production of proinflammatory tumor necrosis factor, IL-12, and nitric oxide in response to lipopolysaccharide. These data suggest a critical role of Adam10 for leukocyte recruitment, inflammatory mediator production, and extracellular matrix degradation. Thereby, myeloid ADAM10 may play a causal role in modulating atherosclerotic plaque stability.


Assuntos
Proteínas ADAM/deficiência , Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/metabolismo , Inflamação/patologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteína ADAM10 , Animais , Colágeno/metabolismo , Citocinas/biossíntese , Fibrose , Citometria de Fluxo , Mediadores da Inflamação/metabolismo , Integrases/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Reação em Cadeia da Polimerase , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
18.
FASEB J ; 28(1): 288-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24043262

RESUMO

Atherosclerosis is a lipid-driven inflammatory disease of the vessel wall, characterized by the chronic activation of macrophages. We investigated whether the helminth-derived antigens [soluble egg antigens (SEAs)] could modulate macrophage inflammatory responses and protect against atherosclerosis in mice. In bone marrow-derived macrophages, SEAs induce anti-inflammatory macrophages, typified by high levels of IL-10 and reduced secretion of proinflammatory mediators. In hyperlipidemic LDLR(-/-) mice, SEA treatment reduced plaque size by 44%, and plaques were less advanced compared with PBS-injected littermate controls. The atheroprotective effect of SEAs was found to be mainly independent of cholesterol lowering and T-lymphocyte responses but instead could be attributed to diminished myeloid cell activation. SEAs reduced circulating neutrophils and inflammatory Ly6C(high) monocytes, and macrophages showed high IL-10 production. In line with the observed systemic effects, atherosclerotic lesions of SEA-treated mice showed reduced intraplaque inflammation as inflammatory markers [TNF-α, monocyte chemotactic protein 1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and CD68], neutrophil content, and newly recruited macrophages were decreased. We show that SEA treatment protects against atherosclerosis development by dampening inflammatory responses. In the future, helminth-derived components may provide novel opportunities to treat chronic inflammatory diseases, as they diminish systemic inflammation and reduce the activation of immune cells.


Assuntos
Antígenos de Helmintos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/terapia , Macrófagos/metabolismo , Animais , Quimiocina CCL2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Angiogenesis ; 17(1): 109-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24013945

RESUMO

OBJECTIVE: Macrophages show extreme heterogeneity and different subsets have been characterized by their activation route and their function. For instance, macrophage subsets are distinct by acting differently under pathophysiological conditions such as inflammation and cancer. Macrophages also contribute to angiogenesis, but the role of various specific subsets in angiogenesis has not been thoroughly investigated. METHODS AND RESULTS: Matrigel supplemented with macrophage subsets [induced by IFNγ (M1), IL-4 (M2a) or IL-10 (M2c)] was injected subcutaneously in C57BL/6 J mice and analyzed by CD31 staining after 14 days. Increased numbers of endothelial cells and tubular structures were observed in M2-enriched plugs compared to control and other subsets. Additionally, more tubular structures formed in vitro in the presence of M2 macrophages or their conditioned medium. To identify a mechanism for the pro-angiogenic effect, gene expression of angiogenic growth factors was analyzed. Induced expression of basic fibroblast growth factor (Fgf2), insulin-like growth factor-1 (Igf1), chemokine (C-C motif) ligand 2 (Ccl2) and placental growth factor (Pgf) was observed in M2 macrophages. Using a blocking antibody of PlGF to inhibit M2c induced angiogenesis resulted in mildly reduced (40 %) tube formation whereas neutralization of FGF-2 (M2a) signaling by sFGFR1-IIIc affected tube formation by nearly 75 %. CONCLUSIONS: These results indicate that macrophages polarized towards an M2 phenotype have a higher angiogenic potential compared to other subsets. Furthermore, we propose FGF signaling for M2a- and PlGF signaling for M2c-induced angiogenesis as possible working mechanisms, yet, further research should elucidate the exact mechanism for M2-induced angiogenesis.


Assuntos
Indutores da Angiogênese/metabolismo , Regulação da Expressão Gênica/fisiologia , Macrófagos/metabolismo , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Quimiocina CCL2/biossíntese , Fator 2 de Crescimento de Fibroblastos/biossíntese , Fator de Crescimento Insulin-Like I/biossíntese , Macrófagos/citologia , Camundongos , Fator de Crescimento Placentário , Proteínas da Gravidez/biossíntese
20.
PLoS One ; 8(7): e68811, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894348

RESUMO

AIMS: Enhancement of collateral development in coronary or peripheral artery disease is a therapeutic target, but it has proven difficult to achieve. Macrophages are key players in collateral remodeling, yet the effect of different macrophage subsets on arteriogenesis has not been investigated. METHODS AND RESULTS: Murine macrophages were cultured from bone marrow and polarized into M1 (IFNγ), M2a (IL-4) or M2c (IL-10) subsets. C57BL/6 mice underwent femoral artery ligation followed by intramuscular injection of macrophage subsets. Using eGFP expressing macrophages, cells could be detected at least 6 days after ligation and were located in the perivascular space of collateral vessels. After 14 days, perfusion ratio was increased in animals treated with M1 as well as M2a and M2c macrophages compared to control. Depletion of circulating monocytes by clodronate liposome injections did not hamper reperfusion recovery, however, treatment with exogenous polarized macrophages improved perfusion ratio after 14 days again. We used IL10R(fl/fl)/LysMCre(+) mice to study the effect of inhibition of endogenous polarization towards specifically M2c macrophages on arteriogenesis. Deletion of the IL10-receptor (IL10R) in the myeloid lineage did not affect reperfusion recovery, yet the pro-arteriogenic effect of exogenously injected M2c macrophages was still present. CONCLUSIONS: Local injection of polarized macrophages promotes reperfusion recovery after femoral artery ligation and is not influenced by depletion of circulatory monocytes. Preventing endogenous M2c polarization did not affect reperfusion recovery suggesting that M2c's are not required for collateralization, but are sufficient to induce collateral formation upon exogenous administration. This is the first study using local injection of macrophage subsets showing the pro-arteriogenic effect of polarized macrophages.


Assuntos
Membro Posterior/patologia , Isquemia/terapia , Macrófagos/citologia , Traumatismo por Reperfusão/terapia , Animais , Células Cultivadas , Feminino , Fêmur/citologia , Isquemia/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo , Tíbia/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA