Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Childs Nerv Syst ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702518

RESUMO

INTRODUCTION: Focused ultrasound (FUS) is an innovative and emerging technology for the treatment of adult and pediatric brain tumors and illustrates the intersection of various specialized fields, including neurosurgery, neuro-oncology, radiation oncology, and biomedical engineering. OBJECTIVE: The authors provide a comprehensive overview of the application and implications of FUS in treating pediatric brain tumors, with a special focus on pediatric low-grade gliomas (pLGGs) and the evolving landscape of this technology and its clinical utility. METHODS: The fundamental principles of FUS include its ability to induce thermal ablation or enhance drug delivery through transient blood-brain barrier (BBB) disruption, emphasizing the adaptability of high-intensity focused ultrasound (HIFU) and low-intensity focused ultrasound (LIFU) applications. RESULTS: Several ongoing clinical trials explore the potential of FUS in offering alternative therapeutic strategies for pathologies where conventional treatments fall short, specifically centrally-located benign CNS tumors and diffuse intrinsic pontine glioma (DIPG). A case illustration involving the use of HIFU for pilocytic astrocytoma is presented. CONCLUSION: Discussions regarding future applications of FUS for the treatment of gliomas include improved drug delivery, immunomodulation, radiosensitization, and other technological advancements.

2.
Sci Data ; 11(1): 62, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200013

RESUMO

Minimally invasive spine surgery (MISS) is increasingly performed using endoscopic and microscopic visualization, and the captured video can be used for surgical education and development of predictive artificial intelligence (AI) models. Video datasets depicting adverse event management are also valuable, as predictive models not exposed to adverse events may exhibit poor performance when these occur. Given that no dedicated spine surgery video datasets for AI model development are publicly available, we introduce Simulated Outcomes for Durotomy Repair in Minimally Invasive Spine Surgery (SOSpine). A validated MISS cadaveric dural repair simulator was used to educate neurosurgery residents, and surgical microscope video recordings were paired with outcome data. Objects including durotomy, needle, grasper, needle driver, and nerve hook were then annotated. Altogether, SOSpine contains 15,698 frames with 53,238 annotations and associated durotomy repair outcomes. For validation, an AI model was fine-tuned on SOSpine video and detected surgical instruments with a mean average precision of 0.77. In summary, SOSpine depicts spine surgeons managing a common complication, providing opportunities to develop surgical AI models.


Assuntos
Inteligência Artificial , Modelos Anatômicos , Humanos , Escolaridade , Coluna Vertebral/cirurgia
3.
Childs Nerv Syst ; 40(5): 1427-1434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38231402

RESUMO

PURPOSE: Hirayama disease, a rare cervical myelopathy in children and young adults, leads to progressive upper limb weakness and muscle loss. Non-invasive external cervical orthosis has been shown to prevent further neurologic decline; however, this treatment modality has not been successful at restoring neurologic and motor function, especially in long standing cases with significant weakness. The pathophysiology remains not entirely understood, complicating standardized operative guidelines; however, some studies report favorable outcomes with internal fixation. We report a successful surgically treated case of pediatric Hirayama disease, supplemented by a systematic review and collation of reported cases in the literature. METHODS: A review of the literature was performed by searching PubMed, Embase, and Web of Science. Full-length articles were included if they reported clinical data regarding the treatment of at least one patient with Hirayama disease and the neurologic outcome of that treatment. Articles were excluded if they did not provide information on treatment outcomes, were abstract-only publications, or were published in languages other than English. RESULTS: Of the fifteen articles reviewed, 63 patients were described, with 59 undergoing surgery. This encompassed both anterior and posterior spinal procedures and 1 hand tendon transfer. Fifty-five patients, including one from our institution, showed improvement post-treatment. Eleven of these patients were under 18 years old. CONCLUSION: Hirayama disease is an infrequent yet impactful cervical myelopathy with limited high-quality evidence available for optimal treatment. The current literature supports surgical decompression and stabilization as promising interventions. However, comprehensive research is crucial for evolving diagnosis and treatment paradigms.


Assuntos
Doenças da Medula Espinal , Fusão Vertebral , Atrofias Musculares Espinais da Infância , Adulto Jovem , Criança , Humanos , Adolescente , Vértebras Cervicais/cirurgia , Discotomia , Atrofias Musculares Espinais da Infância/complicações , Atrofias Musculares Espinais da Infância/diagnóstico , Atrofias Musculares Espinais da Infância/cirurgia , Doenças da Medula Espinal/cirurgia , Resultado do Tratamento , Fusão Vertebral/métodos
4.
Neurosurgery ; 94(4): 764-770, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878410

RESUMO

BACKGROUND AND OBJECTIVES: Pediatric subdural empyemas (SDE) carry significant morbidity and mortality, and prompt diagnosis and treatment are essential to ensure optimal outcomes. Nonclinical factors affect presentation, time to diagnosis, and outcomes in several neurosurgical conditions and are potential causes of delay in presentation and treatment for patients with SDE. To evaluate whether socioeconomic status, race, and insurance status affect presentation, time to diagnosis, and outcomes for children with subdural empyema. METHODS: We conducted a retrospective cohort study with patients diagnosed with SDE between 2005 and 2020 at our institution. Information regarding demographics (age, sex, zip code, insurance status, race/ethnicity) and presentation (symptoms, number of prior visits, duration of symptoms) was collected. Outcome measures included mortality, postoperative complications, length of stay, and discharge disposition. RESULTS: 42 patients were diagnosed with SDE with a mean age of 9.5 years. Most (85.7%) (n = 36) were male ( P = .0004), and a majority, 28/42 (66.7%), were African American ( P < .0001). There was no significant difference in socioeconomic status based on zip codes, although a significantly higher number of patients were on public insurance ( P = .015). African American patients had a significantly longer duration of symptoms than their Caucasian counterparts (8.4 days vs 1.8 days P = .0316). In total, 41/42 underwent surgery for the SDE, most within 24 hours of initial neurosurgical evaluation. There were no significant differences in the average length of stay. The average length of antibiotic duration was 57.2 days and was similar for all patients. There were no significant differences in discharge disposition based on any of the factors identified with most of the patients (52.4%) being discharged to home. There was 1 mortality (2.4%). CONCLUSION: Although there were no differences in outcomes based on nonclinical factors, African American men on public insurance bear a disproportionately high burden of SDE. Further investigation into the causes of this is warranted.


Assuntos
Empiema Subdural , Humanos , Criança , Masculino , Feminino , Empiema Subdural/diagnóstico , Empiema Subdural/epidemiologia , Empiema Subdural/terapia , Estudos Retrospectivos , Disparidades Socioeconômicas em Saúde , Complicações Pós-Operatórias , Alta do Paciente
5.
Bioengineering (Basel) ; 10(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892919

RESUMO

Pediatric brain tumors are the second most common type of cancer, accounting for one in four childhood cancer types. Brain tumor resection surgery remains the most common treatment option for brain cancer. While assessing tumor margins intraoperatively, surgeons must send tissue samples for biopsy, which can be time-consuming and not always accurate or helpful. Snapshot hyperspectral imaging (sHSI) cameras can capture scenes beyond the human visual spectrum and provide real-time guidance where we aim to segment healthy brain tissues from lesions on pediatric patients undergoing brain tumor resection. With the institutional research board approval, Pro00011028, 139 red-green-blue (RGB), 279 visible, and 85 infrared sHSI data were collected from four subjects with the system integrated into an operating microscope. A random forest classifier was used for data analysis. The RGB, infrared sHSI, and visible sHSI models achieved average intersection of unions (IoUs) of 0.76, 0.59, and 0.57, respectively, while the tumor segmentation achieved a specificity of 0.996, followed by the infrared HSI and visible HSI models at 0.93 and 0.91, respectively. Despite the small dataset considering pediatric cases, our research leveraged sHSI technology and successfully segmented healthy brain tissues from lesions with a high specificity during pediatric brain tumor resection procedures.

8.
Int J Spine Surg ; 17(S1): S26-S33, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291063

RESUMO

The worlds of spinal surgery and computational science are intersecting at the nexus of the operating room and across the continuum of patient care. As medicine moves toward digitizing all aspects of a patient's care, immense amounts of patient data generated and aggregated across surgeons, procedures, and institutions will enable previously inaccessible computationally driven insights. These early insights from artificial intelligence (AI) and machine learning (ML)-enabled technologies are beginning to transform medicine and surgery. The complex pathologies facing spine surgeons and their patients require integrative, multimodal, data-driven management strategies. As these data and the technological tools to computationally process them become increasingly available to spine surgeons, AI and ML methods will inform patient selection, preoperatively risk-stratify patients based on myriad factors, and inform interoperative surgical decisions. Once these tools enter early clinical practice, their use creates a virtual flywheel whereby the use of these tools generates additional data that further accelerate the evolution of computational "knowledge" systems. At this digital crossroads, interested and motivated surgeons have an opportunity to understand these technologies, guide their application toward optimal care, and advocate for opportunities where these powerful new tools can deliver step changes in efficiency, accuracy, and intelligence. In the present article, we review the nomenclature and basics of AI and ML and highlight the current and future applications of these technologies across the care continuum of spinal surgery.

10.
Int J Comput Assist Radiol Surg ; 18(9): 1673-1678, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37245179

RESUMO

PURPOSE: Surgical data science is an emerging field focused on quantitative analysis of pre-, intra-, and postoperative patient data (Maier-Hein et al. in Med Image Anal 76: 102306, 2022). Data science approaches can decompose complex procedures, train surgical novices, assess outcomes of actions, and create predictive models of surgical outcomes (Marcus et al. in Pituitary 24: 839-853, 2021; Røadsch et al. in Nat Mach Intell, 2022). Surgical videos contain powerful signals of events that may impact patient outcomes. A necessary step before the deployment of supervised machine learning methods is the development of labels for objects and anatomy. We describe a complete method for annotating videos of transsphenoidal surgery. METHODS: Endoscopic video recordings of transsphenoidal pituitary tumor removal surgeries were collected from a multicenter research collaborative. These videos were anonymized and stored in a cloud-based platform. Videos were uploaded to an online annotation platform. Annotation framework was developed based on a literature review and surgical observations to ensure proper understanding of the tools, anatomy, and steps present. A user guide was developed to trained annotators to ensure standardization. RESULTS: A fully annotated video of a transsphenoidal pituitary tumor removal surgery was produced. This annotated video included over 129,826 frames. To prevent any missing annotations, all frames were later reviewed by highly experienced annotators and a surgeon reviewer. Iterations to annotated videos allowed for the creation of an annotated video complete with labeled surgical tools, anatomy, and phases. In addition, a user guide was developed for the training of novice annotators, which provides information about the annotation software to ensure the production of standardized annotations. CONCLUSIONS: A standardized and reproducible workflow for managing surgical video data is a necessary prerequisite to surgical data science applications. We developed a standard methodology for annotating surgical videos that may facilitate the quantitative analysis of videos using machine learning applications. Future work will demonstrate the clinical relevance and impact of this workflow by developing process modeling and outcome predictors.


Assuntos
Algoritmos , Neoplasias Hipofisárias , Humanos , Aprendizado de Máquina Supervisionado , Endoscopia , Aprendizado de Máquina , Estudos Multicêntricos como Assunto
11.
Cureus ; 15(2): e35033, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36938191

RESUMO

Aneurysmal bone cysts are benign osseous lesions containing blood-filled cavities separated by walls of connective tissue. They can be difficult to identify clinically due to similarities in presentation, imaging, and histology with other pathologies. Specifically, it is important to distinguish these benign lesions from malignant processes, as both surgical and medical management differ. We present the case of a 21-year-old patient who presented with impaired motor and sensory function in his lower extremities. Radiologic findings were concerning for an invasive neoplasm, and the intraoperative frozen section supported this conclusion. However, an additional histological investigation was confirmatory for a diagnosis of an aneurysmal bone cyst. The patient underwent corpectomy, laminectomy, and a posterior spinal fusion, and regained motor and sensory function shortly thereafter. This report details the importance of considering aneurysmal bone cysts in the differential of infiltrative bone lesions, despite their benign nature, as medical and surgical management can vary greatly.

12.
Commun Med (Lond) ; 3(1): 42, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997578

RESUMO

BACKGROUND: Surgeons who receive reliable feedback on their performance quickly master the skills necessary for surgery. Such performance-based feedback can be provided by a recently-developed artificial intelligence (AI) system that assesses a surgeon's skills based on a surgical video while simultaneously highlighting aspects of the video most pertinent to the assessment. However, it remains an open question whether these highlights, or explanations, are equally reliable for all surgeons. METHODS: Here, we systematically quantify the reliability of AI-based explanations on surgical videos from three hospitals across two continents by comparing them to explanations generated by humans experts. To improve the reliability of AI-based explanations, we propose the strategy of training with explanations -TWIX -which uses human explanations as supervision to explicitly teach an AI system to highlight important video frames. RESULTS: We show that while AI-based explanations often align with human explanations, they are not equally reliable for different sub-cohorts of surgeons (e.g., novices vs. experts), a phenomenon we refer to as an explanation bias. We also show that TWIX enhances the reliability of AI-based explanations, mitigates the explanation bias, and improves the performance of AI systems across hospitals. These findings extend to a training environment where medical students can be provided with feedback today. CONCLUSIONS: Our study informs the impending implementation of AI-augmented surgical training and surgeon credentialing programs, and contributes to the safe and fair democratization of surgery.


Surgeons aim to master skills necessary for surgery. One such skill is suturing which involves connecting objects together through a series of stitches. Mastering these surgical skills can be improved by providing surgeons with feedback on the quality of their performance. However, such feedback is often absent from surgical practice. Although performance-based feedback can be provided, in theory, by recently-developed artificial intelligence (AI) systems that use a computational model to assess a surgeon's skill, the reliability of this feedback remains unknown. Here, we compare AI-based feedback to that provided by human experts and demonstrate that they often overlap with one another. We also show that explicitly teaching an AI system to align with human feedback further improves the reliability of AI-based feedback on new videos of surgery. Our findings outline the potential of AI systems to support the training of surgeons by providing feedback that is reliable and focused on a particular skill, and guide programs that give surgeons qualifications by complementing skill assessments with explanations that increase the trustworthiness of such assessments.

13.
Nat Biomed Eng ; 7(6): 780-796, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997732

RESUMO

The intraoperative activity of a surgeon has substantial impact on postoperative outcomes. However, for most surgical procedures, the details of intraoperative surgical actions, which can vary widely, are not well understood. Here we report a machine learning system leveraging a vision transformer and supervised contrastive learning for the decoding of elements of intraoperative surgical activity from videos commonly collected during robotic surgeries. The system accurately identified surgical steps, actions performed by the surgeon, the quality of these actions and the relative contribution of individual video frames to the decoding of the actions. Through extensive testing on data from three different hospitals located in two different continents, we show that the system generalizes across videos, surgeons, hospitals and surgical procedures, and that it can provide information on surgical gestures and skills from unannotated videos. Decoding intraoperative activity via accurate machine learning systems could be used to provide surgeons with feedback on their operating skills, and may allow for the identification of optimal surgical behaviour and for the study of relationships between intraoperative factors and postoperative outcomes.


Assuntos
Procedimentos Cirúrgicos Robóticos , Cirurgiões , Humanos , Procedimentos Cirúrgicos Robóticos/métodos
14.
Oper Neurosurg (Hagerstown) ; 23(3): 235-240, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972087

RESUMO

BACKGROUND: Intraoperative tool movement data have been demonstrated to be clinically useful in quantifying surgical performance. However, collecting this information from intraoperative video requires laborious hand annotation. The ability to automatically annotate tools in surgical video would advance surgical data science by eliminating a time-intensive step in research. OBJECTIVE: To identify whether machine learning (ML) can automatically identify surgical instruments contained within neurosurgical video. METHODS: A ML model which automatically identifies surgical instruments in frame was developed and trained on multiple publicly available surgical video data sets with instrument location annotations. A total of 39 693 frames from 4 data sets were used (endoscopic endonasal surgery [EEA] [30 015 frames], cataract surgery [4670], laparoscopic cholecystectomy [2532], and microscope-assisted brain/spine tumor removal [2476]). A second model trained only on EEA video was also developed. Intraoperative EEA videos from YouTube were used for test data (3 videos, 1239 frames). RESULTS: The YouTube data set contained 2169 total instruments. Mean average precision (mAP) for instrument detection on the YouTube data set was 0.74. The mAP for each individual video was 0.65, 0.74, and 0.89. The second model trained only on EEA video also had an overall mAP of 0.74 (0.62, 0.84, and 0.88 for individual videos). Development costs were $130 for manual video annotation and under $100 for computation. CONCLUSION: Surgical instruments contained within endoscopic endonasal intraoperative video can be detected using a fully automated ML model. The addition of disparate surgical data sets did not improve model performance, although these data sets may improve generalizability of the model in other use cases.


Assuntos
Aprendizado de Máquina , Instrumentos Cirúrgicos , Humanos , Gravação em Vídeo
15.
Sci Rep ; 12(1): 8137, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581213

RESUMO

Major vascular injury resulting in uncontrolled bleeding is a catastrophic and often fatal complication of minimally invasive surgery. At the outset of these events, surgeons do not know how much blood will be lost or whether they will successfully control the hemorrhage (achieve hemostasis). We evaluate the ability of a deep learning neural network (DNN) to predict hemostasis control ability using the first minute of surgical video and compare model performance with human experts viewing the same video. The publicly available SOCAL dataset contains 147 videos of attending and resident surgeons managing hemorrhage in a validated, high-fidelity cadaveric simulator. Videos are labeled with outcome and blood loss (mL). The first minute of 20 videos was shown to four, blinded, fellowship trained skull-base neurosurgery instructors, and to SOCALNet (a DNN trained on SOCAL videos). SOCALNet architecture included a convolutional network (ResNet) identifying spatial features and a recurrent network identifying temporal features (LSTM). Experts independently assessed surgeon skill, predicted outcome and blood loss (mL). Outcome and blood loss predictions were compared with SOCALNet. Expert inter-rater reliability was 0.95. Experts correctly predicted 14/20 trials (Sensitivity: 82%, Specificity: 55%, Positive Predictive Value (PPV): 69%, Negative Predictive Value (NPV): 71%). SOCALNet correctly predicted 17/20 trials (Sensitivity 100%, Specificity 66%, PPV 79%, NPV 100%) and correctly identified all successful attempts. Expert predictions of the highest and lowest skill surgeons and expert predictions reported with maximum confidence were more accurate. Experts systematically underestimated blood loss (mean error - 131 mL, RMSE 350 mL, R2 0.70) and fewer than half of expert predictions identified blood loss > 500 mL (47.5%, 19/40). SOCALNet had superior performance (mean error - 57 mL, RMSE 295 mL, R2 0.74) and detected most episodes of blood loss > 500 mL (80%, 8/10). In validation experiments, SOCALNet evaluation of a critical on-screen surgical maneuver and high/low-skill composite videos were concordant with expert evaluation. Using only the first minute of video, experts and SOCALNet can predict outcome and blood loss during surgical hemorrhage. Experts systematically underestimated blood loss, and SOCALNet had no false negatives. DNNs can provide accurate, meaningful assessments of surgical video. We call for the creation of datasets of surgical adverse events for quality improvement research.


Assuntos
Aprendizado Profundo , Cirurgiões , Perda Sanguínea Cirúrgica , Competência Clínica , Humanos , Reprodutibilidade dos Testes , Gravação em Vídeo
18.
Neurosurg Focus ; 52(1): E15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973668

RESUMO

OBJECTIVE: The utility of robotic instrumentation is expanding in neurosurgery. Despite this, successful examples of robotic implementation for endoscopic endonasal or skull base neurosurgery remain limited. Therefore, the authors performed a systematic review of the literature to identify all articles that used robotic systems to access the sella or anterior, middle, or posterior cranial fossae. METHODS: A systematic review of MEDLINE and PubMed in accordance with PRISMA guidelines performed for articles published between January 1, 1990, and August 1, 2021, was conducted to identify all robotic systems (autonomous, semiautonomous, or surgeon-controlled) used for skull base neurosurgical procedures. Cadaveric and human clinical studies were included. Studies with exclusively otorhinolaryngological applications or using robotic microscopes were excluded. RESULTS: A total of 561 studies were identified from the initial search, of which 22 were included following full-text review. Transoral robotic surgery (TORS) using the da Vinci Surgical System was the most widely reported system (4 studies) utilized for skull base and pituitary fossa procedures; additionally, it has been reported for resection of sellar masses in 4 patients. Seven cadaveric studies used the da Vinci Surgical System to access the skull base using alternative, non-TORS approaches (e.g., transnasal, transmaxillary, and supraorbital). Five cadaveric studies investigated alternative systems to access the skull base. Six studies investigated the use of robotic endoscope holders. Advantages to robotic applications in skull base neurosurgery included improved lighting and 3D visualization, replication of more traditional gesture-based movements, and the ability for dexterous movements ordinarily constrained by small operative corridors. Limitations included the size and angulation capacity of the robot, lack of drilling components preventing fully robotic procedures, and cost. Robotic endoscope holders may have been particularly advantageous when the use of a surgical assistant or second surgeon was limited. CONCLUSIONS: Robotic skull base neurosurgery has been growing in popularity and feasibility, but significant limitations remain. While robotic systems seem to have allowed for greater maneuverability and 3D visualization, their size and lack of neurosurgery-specific tools have continued to prevent widespread adoption into current practice. The next generation of robotic technologies should prioritize overcoming these limitations.


Assuntos
Neurocirurgia , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Procedimentos Neurocirúrgicos , Procedimentos Cirúrgicos Robóticos/métodos , Base do Crânio/cirurgia
19.
J Craniofac Surg ; 33(1): e34-e37, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34292251

RESUMO

ABSTRACT: The authors provide the case of a 6-year-old male who presented late with multi-suture craniosynostosis and chronically elevated intracranial pressures (ICPs). He was surgically managed with frontal orbital advancement. This particular case illustrates the significant bleeding and unique bony pathology that can occur in patients with high ICP with concomitant venous collateralization. At 1-month follow-up, he demonstrated significant improvement with maintained expansion and no signs of elevated ICP despite delayed intervention. Frontal orbital advancement serves as an effective method for cranial vault expansion and correction of frontal deformities caused by craniosynostosis.


Assuntos
Craniossinostoses , Criança , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Humanos , Lactente , Pressão Intracraniana , Masculino , Procedimentos Neurocirúrgicos , Crânio , Suturas
20.
J Neurosurg ; : 1-10, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972086

RESUMO

OBJECTIVE: Experts can assess surgeon skill using surgical video, but a limited number of expert surgeons are available. Automated performance metrics (APMs) are a promising alternative but have not been created from operative videos in neurosurgery to date. The authors aimed to evaluate whether video-based APMs can predict task success and blood loss during endonasal endoscopic surgery in a validated cadaveric simulator of vascular injury of the internal carotid artery. METHODS: Videos of cadaveric simulation trials by 73 neurosurgeons and otorhinolaryngologists were analyzed and manually annotated with bounding boxes to identify the surgical instruments in the frame. APMs in five domains were defined-instrument usage, time-to-phase, instrument disappearance, instrument movement, and instrument interactions-on the basis of expert analysis and task-specific surgical progressions. Bounding-box data of instrument position were then used to generate APMs for each trial. Multivariate linear regression was used to test for the associations between APMs and blood loss and task success (hemorrhage control in less than 5 minutes). The APMs of 93 successful trials were compared with the APMs of 49 unsuccessful trials. RESULTS: In total, 29,151 frames of surgical video were annotated. Successful simulation trials had superior APMs in each domain, including proportionately more time spent with the key instruments in view (p < 0.001) and less time without hemorrhage control (p = 0.002). APMs in all domains improved in subsequent trials after the participants received personalized expert instruction. Attending surgeons had superior instrument usage, time-to-phase, and instrument disappearance metrics compared with resident surgeons (p < 0.01). APMs predicted surgeon performance better than surgeon training level or prior experience. A regression model that included APMs predicted blood loss with an R2 value of 0.87 (p < 0.001). CONCLUSIONS: Video-based APMs were superior predictors of simulation trial success and blood loss than surgeon characteristics such as case volume and attending status. Surgeon educators can use APMs to assess competency, quantify performance, and provide actionable, structured feedback in order to improve patient outcomes. Validation of APMs provides a benchmark for further development of fully automated video assessment pipelines that utilize machine learning and computer vision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA