Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(5): 1296-1306, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38651817

RESUMO

The primary treatment for glioblastoma (GBM) is removing the tumor mass as defined by MRI. However, MRI has limited diagnostic and predictive value. Tumor-associated macrophages (TAM) are abundant in GBM tumor microenvironment (TME) and are found in peripheral blood (PB). FKBP51 expression, with its canonical and spliced isoforms, is constitutive in immune cells and aberrant in GBM. Spliced FKBP51s supports M2 polarization. To find an immunologic signature that combined with MRI could advance in diagnosis, we immunophenotyped the macrophages of TME and PB from 37 patients with GBM using FKBP51s and classical M1-M2 markers. We also determined the tumor levels of FKBP51s, PD-L1, and HLA-DR. Tumors expressing FKBP51s showed an increase in various M2 phenotypes and regulatory T cells in PB, indicating immunosuppression. Tumors expressing FKBP51s also activated STAT3 and were associated with reduced survival. Correlative studies with MRI and tumor/macrophages cocultures allowed to interpret TAMs. Tumor volume correlated with M1 infiltration of TME. Cocultures with spheroids produced M1 polarization, suggesting that M1 macrophages may infiltrate alongside cancer stem cells. Cocultures of adherent cells developed the M2 phenotype CD163/FKBP51s expressing pSTAT6, a transcription factor enabling migration and invasion. In patients with recurrences, increased counts of CD163/FKBP51s monocyte/macrophages in PB correlated with callosal infiltration and were accompanied by a concomitant decrease in TME-infiltrating M1 macrophages. PB PD-L1/FKBP51s connoted necrotic tumors. In conclusion, FKBP51s identifies a GBM subtype that significantly impairs the immune system. Moreover, FKBP51s marks PB macrophages associated with MRI features of glioma malignancy that can aid in patient monitoring. SIGNIFICANCE: Our research suggests that by combining imaging with analysis of monocyte/macrophage subsets in patients with GBM, we can enhance our understanding of the disease and assist in its treatment. We discovered a similarity in the macrophage composition between the TME and PB, and through association with imaging, we could interpret macrophages. In addition, we identified a predictive biomarker that drew more attention to immune suppression of patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Isoformas de Proteínas , Proteínas de Ligação a Tacrolimo , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/diagnóstico por imagem , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Prognóstico , Feminino , Microambiente Tumoral/imunologia , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Pessoa de Meia-Idade , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Imageamento por Ressonância Magnética , Adulto
2.
Brain Sci ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35741603

RESUMO

Background and aim: Ever since the discovery of tumor-associated immune cells, there has been growing interest in the understanding of the mechanisms underlying the crosstalk between these cells and tumor cells. A "seed and soil" approach has been recently introduced to describe the glioblastoma (GBM) landscape: tumor microenvironments act as fertile "soil" and interact with the "seed" (glial and stem cells compartment). In the following article, we provide a systematic review of the current evidence pertaining to the characterization of glioma-associated macrophages and microglia (GAMs) and microglia and macrophage cells in the glioma tumor microenvironment (TME). Methods: An online literature search was launched on PubMed Medline and Scopus using the following research string: "((Glioma associated macrophages OR GAM OR Microglia) AND (glioblastoma tumor microenvironment OR TME))". The last search for articles pertinent to the topic was conducted in February 2022. Results: The search of the literature yielded a total of 349 results. A total of 235 studies were found to be relevant to our research question and were assessed for eligibility. Upon a full-text review, 58 articles were included in the review. The reviewed papers were further divided into three categories based on their focus: (1) Microglia maintenance of immunological homeostasis and protection against autoimmunity; (2) Microglia crosstalk with dedifferentiated and stem-like glioblastoma cells; (3) Microglia migratory behavior and its activation pattern. Conclusions: Aggressive growth, inevitable recurrence, and scarce response to immunotherapies are driving the necessity to focus on the GBM TME from a different perspective to possibly disentangle its role as a fertile 'soil' for tumor progression and identify within it feasible therapeutic targets. Against this background, our systematic review confirmed microglia to play a paramount role in promoting GBM progression and relapse after treatments. The correct and extensive understanding of microglia-glioma crosstalk could help in understanding the physiopathology of this complex disease, possibly opening scenarios for improvement of treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA