Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(21): 9001-9010, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38726661

RESUMO

Cyclometallated Pt(II) complexes possessing hydrophobic 2-phenylpyridine (ppy) ligands and hydrophilic acetonylacetone (acac) ligands have been investigated for their ability to detect amyloid fibrils via luminescence response. Using hen egg-white lysozyme (HEWL) as a model amyloid protein, Pt(II) complexes featuring benzanilide-substituted ppy ligands and ethylene glycol-functionalized acac ligands demonstrated enhanced luminescence in the presence of HEWL fibrils, whereas Pt(II) complexes lacking complementary hydrophobic/hydrophilic ligand sets displayed little to no emission enhancement. An amphiphilic Pt(II) complex incorporating a bis(ethylene glycol)-derivatized acac ligand was additionally found to trigger restructuring of HEWL fibrils into smaller spherical aggregates. Amphiphilic Pt(II) complexes were generally non-toxic to SH-SY5Y neuroblastoma cells, and several complexes also exhibited enhanced luminescence in the presence of Aß42 fibrils associated with Alzheimer's disease. This study demonstrates that easily prepared and robust (ppy)PtII(acac) complexes show promising reactivity toward amyloid fibrils and represent attractive molecular scaffolds for design of small-molecule probes targeting amyloid assemblies.


Assuntos
Amiloide , Muramidase , Humanos , Amiloide/química , Amiloide/metabolismo , Muramidase/química , Muramidase/metabolismo , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Luminescência , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Animais , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos/efeitos dos fármacos , Platina/química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/síntese química , Ligantes , Tensoativos/química , Tensoativos/síntese química
2.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609242

RESUMO

The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies. Highlights: PCB 52 was present in adipose, brain, liver, and serum 3 weeks after PCB exposureLiver and serum contained hydroxylated, sulfated, and methylated PCB 52 metabolitesMetabolomics analysis revealed minor changes in endogenous serum metabolitesLevels of dopamine and its metabolites in the brain were not affected by PCB 52.

3.
Environ Toxicol Pharmacol ; 102: 104245, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572994

RESUMO

The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies.


Assuntos
Bifenilos Policlorados , Ratos , Feminino , Animais , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas
4.
Chem Res Toxicol ; 34(10): 2184-2193, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34506109

RESUMO

Monoamine oxidase (MAO) catalyzes the oxidative deamination of dopamine and norepinephrine to produce 3,4-dihydroxyphenylacetaldehyde (DOPAL) and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), respectively. Both of these aldehydes are potently cytotoxic and have been implicated in pathogenesis of neurodegenerative and cardiometabolic disorders. Previous work has demonstrated that both the catechol and aldehyde moieties of DOPAL are reactive and cytotoxic via their propensity to cause macromolecular cross-linking. With certain amines, DOPAL likely reacts via a Schiff base before oxidative activation of the catechol and rearrangement to a stable indole product. Our current work expands on this reactivity and includes the less-studied DOPEGAL. Although we confirmed that antioxidants mediated DOPAL's reactivity with carnosine and N-acetyl-l-lysine, antioxidants had no effect on reactivity with l-cysteine. Therefore, we propose a non-oxidative mechanism where, following Schiff base formation, the thiol of l-cysteine reacts to form a thiazolidine. Similarly, we demonstrate that DOPEGAL forms a putative thiazolidine conjugate with l-cysteine. We identified and characterized both l-cysteine conjugates via HPLC-MS and additionally identified a DOPEGAL adduct with carnosine, which is likely an Amadori product. Furthermore, we were able to demonstrate that these conjugates are produced in biological systems via MAO after treatment of the cell lysate with norepinephrine or dopamine along with the corresponding nucleophiles (i.e., l-cysteine and carnosine). As it has been established that metabolic and oxidative stress leads to increased MAO activity and accumulation of DOPAL and DOPEGAL, it is conceivable that conjugation of these aldehydes to carnosine or l-cysteine is a newly identified detoxification pathway. Furthermore, the ability to characterize these adducts via analytical techniques reveals their potential for use as biomarkers of dopamine or norepinephrine metabolic disruption.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Carnosina/metabolismo , Catecóis/metabolismo , Cisteína/metabolismo , Monoaminoxidase/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular
5.
Neurotoxicology ; 86: 85-93, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314733

RESUMO

Parkinson's disease is characterized by dopamine dyshomeostasis and oxidative stress. The aldehyde metabolite of dopamine, 3,4-dihydroxyphenylacetaldehyde (DOPAL), has been reported to be cytotoxic and capable of protein modification. Protein modification by DOPAL has been implicated in the pathogenesis of Parkinson's disease, but the complete pathology is unknown. Our findings show that DOPAL modifies glutathione S-transferase (GST), an important enzyme in the antioxidant defense system. DOPAL, dopamine, and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), inhibited the activity of GST isolated from N27 dopaminergic cells at an IC50 of 31.46 µM, 82.32 µM, and 260.0 µM, respectively. DOPAL, dopamine, and DOPAC inhibited commercially available equine liver GST at an IC50 of 23.72 µM, 32.17 µM, and 73.70 µM, respectively. This inhibition was time dependent and irreversible. 1 mM ʟ-cysteine or glutathione fully protected GST activity from DOPAL, DA, and DOPAC inhibition. 1 mM carnosine partially protected GST activity from DA inhibition. Furthermore, ʟ-cysteine was found to protect GST by forming a putative thiazolidine conjugate with DOPAL. We conclude that GST inactivation may be a part of the broader etiopathology of Parkinson's disease.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glutationa Transferase/antagonistas & inibidores , Animais , Linhagem Celular , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Cavalos , Ratos
6.
Chembiochem ; 22(9): 1609-1620, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480159

RESUMO

Regulator of G protein signaling (RGS) proteins have attracted attention as a result of their primary role in directing the specificity as well as the temporal and spatial aspects of G protein-coupled receptor signaling. In addition, alterations in RGS protein expression have been observed in a number of disease states, including certain cancers. In this area, RGS17 is of particular interest. It has been demonstrated that, while RGS17 is expressed primarily in the central nervous system, it has been found to be inappropriately expressed in lung, prostate, breast, cervical, and hepatocellular carcinomas. Overexpression of RGS17 leads to dysfunction in inhibitory G protein signaling and an overproduction of the intracellular second messenger cAMP, which in turn alters the transcription patterns of proteins known to promote various cancer types. Suppressing RGS17 expression with RNA interference (RNAi) has been found to decrease tumorigenesis and sufficiently prevents cancer cell migration, leading to the hypothesis that pharmacological blocking of RGS17 function could be useful in anticancer therapies. We have identified small-molecule fragments capable of binding the RGS homology (RH) domain of RGS17 by using a nuclear magnetic resonance fragment-based screening approach. By chemical shift mapping of the two-dimensional 15 N,1 H heteronuclear single quantum coherence (HSQC) spectra of the backbone-assigned 15 N-labeled RGS17-RH, we determined the fragment binding sites to be distant from the Gα interface. Thus, our study identifies a putative fragment binding site on RGS17 that was previously unknown.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas RGS/metabolismo , Sítios de Ligação , Humanos , Cinética , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Proteínas RGS/antagonistas & inibidores , Proteínas RGS/genética , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
7.
ACS Chem Neurosci ; 11(6): 840-850, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32058688

RESUMO

Aggregated amyloid beta (Aß) is widely reported to cause neuronal dystrophy and toxicity through multiple pathways: oxidative stress, disrupting calcium homeostasis, and cytoskeletal dysregulation. The neuro-cytoskeleton is a dynamic structure that reorganizes to maintain cell homeostasis in response to varying soluble and physical cues presented from the extracellular matrix (ECM). Due this relationship between cell health and the ECM, we hypothesize that amyloid toxicity may be directly influenced by physical changes to the ECM (stiffness and dimensionality) through mechanosensitive pathways, and while previous studies demonstrated that Aß can distort focal adhesion signaling with pathological consequences, these studies do not address the physical contribution from a physiologically relevant matrix. To test our hypothesis that physical cues can adjust Aß toxicity, SH-SY5Y human neuroblastoma and primary human cortical neurons were plated on soft and stiff, 2D polyacrylamide matrices or suspended in 3D collagen gels. Each cell culture was exposed to escalating concentrations of oligomeric or fibrillated Aß(1-42) with MTS viability and lactate dehydrogenase toxicity assessed. Actin restructuring was further monitored in live cells by atomic force microscopy nanoindentation, and our results demonstrate that increasing either matrix stiffness or exposure to oligomeric Aß promotes F-actin polymerization and cell stiffening, while mature Aß fibrils yielded no apparent cell stiffening and minor toxicity. Moreover, the rounded, softer mechanical phenotype displayed by cells plated onto a compliant matrix also demonstrated a resilience to oligomeric Aß as noted by a significant recovery of viability when compared to same-dosed cells plated on traditional tissue culture plastic. This recovery was reproduced pharmacologically through inhibiting actin polymerization with cytochalasin D prior to Aß exposure. These studies indicate that the cell-ECM interface can modify amyloid toxicity in neurons and the matrix-mediated pathways that promote this protection may offer unique targets in amyloid pathologies like Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Linhagem Celular Tumoral , Neuroblastoma , Fragmentos de Peptídeos , Humanos , Neurônios , Fenótipo
8.
ACS Chem Neurosci ; 10(3): 1284-1293, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30499651

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the extracellular deposition of dense amyloid beta plaques. Emerging evidence suggests that the production of these plaques is initiated by the intracellular uptake and lysosomal preconcentration of the amyloid-beta (Aß) peptide. All previous endocytosis studies assess Aß uptake with cells plated on traditional tissue culture plastic; however, brain tissue is distinctly soft with a low-kPa stiffness. Use of an ultrastiff plastic/glass substrate prompts a mechanosensitive response (increased cell spreading, cell stiffness, and membrane tension) that potentially distorts a cell's endocytic behavior from that observed in vivo or in a more physiologically relevant mechanical environment. Our studies demonstrate substrate stiffness significantly modifies the behavior of undifferentiated SH-SY5Y neuroblastoma, where cells plated on soft (∼1 kPa) substrates display a rounded morphology, decreased actin polymerization, reduced adhesion (decreased ß1 integrin expression), and reduced cell stiffness compared to cells plated on tissue culture plastic. Moreover, these neuroblastoma on softer substrates display a preferential increase in the uptake of the Aß(1-42) compared to Aß(1-40), while both isoforms display a clear stiffness-dependent increase of uptake relative to cells plated on plastic. Considering the brain is a soft tissue that continues to soften with age, this mechanosensitive endocytosis of Aß has significant implications for understanding age-related neurodegeneration and the mechanism behind Aß uptake and fibril production. Overall, identifying these physical factors that contribute to the pathology of AD may offer novel avenues of therapeutic intervention.


Assuntos
Actinas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endocitose/fisiologia , Matriz Extracelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Resinas Acrílicas , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Colesterol/metabolismo , Elasticidade , Géis , Vidro , Humanos
9.
Amino Acids ; 51(1): 97-102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30191330

RESUMO

Oxidative deamination of norepinephrine (NE) and dopamine (DA) by monoamine oxidase (MAO) generates the catecholaldehydes 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) and 3,4-dihydroxyphenylacetaldehyde (DOPAL), respectively, and H2O2. Catecholaldehydes are highly reactive electrophiles that have been implicated as causal factors in the etiology of neurodegenerative diseases and cardiac injury from ischemia and diabetes. The reactivity of both catechol and aldehyde groups enables the catecholaldehdyes to cross-link proteins and other biological molecules. Carnosine is a ß-alanyl-histidine dipeptide found in millimolar concentrations in brain and myocardium. It is well known to detoxify aldehydes formed from oxidized lipids and sugars, yet the reactivity of carnosine with catecholaldehydes has never been reported. Here, we investigated the ability of carnosine to form conjugates with DOPAL and DOPEGAL. Both catecholaldehydes were highly reactive towards L-cysteine (L-Cys), as well as carnosine; however, glutathione (GSH) showed essentially no reactivity towards DOPAL. In contrast, GSH readily reacted with the lipid peroxidation product 4-hydroxy-2-nonenal (4HNE), while carnosine showed low reactivity to 4HNE by comparison. To determine whether carnosine mitigates catecholaldehyde toxicity, samples of atrial myocardium were collected from patients undergoing elective cardiac surgery. Using permeabilized myofibers prepared from this tissue, mitochondrial respiration analysis revealed a concentration-dependent decrease in ADP-stimulated respiration with DOPAL. Pre-incubation with carnosine, but not GSH or L-Cys, significantly reduced this effect (p < 0.05). Carnosine was also able to block formation of catecholaldehyde protein adducts in isolated human cardiac mitochondria treated with NE. These findings demonstrate the unique reactivity of carnosine towards catecholaldehydes and, therefore, suggest a novel and distinct biological role for histidine dipeptides in this detoxification reaction. The therapeutic potential of carnosine in diseases associated with catecholamine-related toxicity is worthy of further examination.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Aldeídos/metabolismo , Carnosina/farmacologia , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Idoso , Catecóis , Cisteína/farmacologia , Glutationa/farmacologia , Humanos , Pessoa de Meia-Idade , Oxirredução
10.
Environ Toxicol Pharmacol ; 62: 69-78, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29986280

RESUMO

Although neurotoxicity and hepatotoxicity have long been associated with exposure to polychlorinated biphenyls (PCBs), less is known about the selective toxicity of those hydroxylated PCBs (OH-PCBs) and PCB sulfates that are metabolites derived from exposure to PCBs found in indoor air. We have examined the toxicity of OH-PCBs and PCB sulfates derived from PCBs 3, 8, 11, and 52 in two neural cell lines (N27 and SH-SY5Y) and an hepatic cell line (HepG2). With the exception of a similar toxicity seen for N27 cells exposed to either OH-PCB 52 or PCB 52 sulfate, these OH-PCBs were more toxic to all three cell-types than their corresponding PCB or PCB sulfate congeners. Differences in the distribution of individual OH-PCB and PCB sulfate congeners between the cells and media, and the ability of cells to interconvert PCB sulfates and OH-PCBs, were important components of cellular sensitivity to these toxicants.


Assuntos
Poluentes Atmosféricos/toxicidade , Bifenilos Policlorados/toxicidade , Sulfatos/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidroxilação , Ratos
11.
SLAS Discov ; 23(4): 363-374, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29351497

RESUMO

Regulator of G protein signaling (RGS) proteins temporally regulate heterotrimeric G protein signaling cascades elicited by G protein-coupled receptor activation and thus are essential for cell homeostasis. The dysregulation of RGS protein expression has been linked to several pathologies, spurring discovery efforts to identify small-molecule inhibitors of these proteins. Presented here are the results of a high-throughput screening (HTS) campaign targeting RGS17, an RGS protein reported to be inappropriately upregulated in several cancers. A screen of over 60,000 small molecules led to the identification of five hit compounds that inhibit the RGS17-Gαo protein-protein interaction. Chemical and biochemical characterization demonstrated that three of these hits inhibited the interaction through the decomposition of parent compound into reactive products under normal chemical library storage/usage conditions. Compound substructures susceptible to decomposition are reported and the decomposition process characterized, adding to the armamentarium of tools available to the screening field, allowing for the conservation of resources in follow-up efforts and more efficient identification of potentially decomposed compounds. Finally, analogues of one hit compound were tested, and the results establish the first ever structure-activity relationship (SAR) profile for a small-molecule inhibitor of RGS17.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Oncogenes/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Proteínas RGS/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Oncogenes/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas RGS/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Toxicology ; 394: 93-101, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233657

RESUMO

Polychlorinated biphenyls (PCB) exposure at low chronic levels is a significant public health concern. Animal and epidemiological studies indicate that low PCB body burden may cause neurotoxicity and be a risk factor for neurodegenerative diseases. In the current study, we measured the ability of two non-dioxin like PCBs, 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) and 2,2'3,5',6-pentachlorobiphenyl (PCB95), to alter dopamine (DA) levels and metabolism using the dopaminergic PC12 cell line. Our hypothesis is that treatment of PC12 cells with non-toxic concentrations of PCB153 or PCB95 for 12 and 24 h will have different effects due to different congener structures. Levels of DA and of 3,4-dihydroxyphenylacetaldehyde (DOPAL), 3, 4-dihyroxylphenylethanol (DOPET), and 3,4-dihyroxylphenylacetic acid (DOPAC) metabolite, gene expression of the dopamine synthesis enzyme tyrosine hydroxylase (TH) and the vesicular monoamine transporter (VMAT2), and gene expression of the anti-oxidant enzymes Cu/Zn and Mn superoxide oxidase (Cu/ZnSOD, MnSOD), glutathione peroxidase (GPx) and catalase were determined. PCB153 decreased intracellular and extracellular levels of DA after 12 h exposure and this was consistent with an increase in DA metabolites. After 24 h, the level of DA in medium increased compared to the control. In contrast, PCB95 exposure increased the intracellular DA level and decreased DA in medium consistent with a down-regulation of VMAT2 expression at 12 h. After 24 h exposure, PCB95 increased DA levels in media. Expression of TH mRNA increased slightly following 12 h but not at 24 h exposure. MnSOD mRNA increased up to 6-7 fold and Cu/ZnSOD increased less than two-fold after treatment with both congeners. Catalase expression was up-regulated following 24 h exposure to PCB153 and PCB95, but GPx expression was down-regulated after 12 h exposure to PCB95 only. These results suggest that PCB153 and PCB95 are neurotoxic and affect DA turnover with structure-dependent differences between these two congeners.


Assuntos
Dopamina/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Bifenilos Policlorados/toxicidade , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Masculino , Células PC12 , Ratos
13.
J Nat Prod ; 80(7): 1992-2000, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621943

RESUMO

Regulator of G Protein Signaling (RGS) 17 is an overexpressed promoter of cancer survival in lung and prostate tumors, the knockdown of which results in decreased tumor cell proliferation in vitro. Identification of drug-like molecules inhibiting this protein could ameliorate the RGS17's pro-tumorigenic effect. Using high-throughput screening, a chemical library containing natural products was interrogated for inhibition of the RGS17-Gαo interaction. Initial hits were verified in control and counter screens. Leads were characterized via biochemical, mass spectrometric, Western blot, microscopic, and cytotoxicity measures. Four known compounds (1-4) were identified with IC50 values ranging from high nanomolar to low micromolar. Three compounds were extensively characterized biologically, demonstrating cellular activity determined by confocal microscopy, and two compounds were assessed via ITC exhibiting high nanomolar to low micromolar dissociation constants. The compounds were found to have a cysteine-dependent mechanism of binding, verified through site-directed mutagenesis and cysteine reactivity assessment. Two compounds, sanguinarine (1) and celastrol (2), were found to be cytostatic against lung and prostate cancer cell lines and cytotoxic against prostate cancer cell lines in vitro, although the dependence of RGS17 on these phenomena remains elusive, a result that is perhaps not surprising given the multimodal cytostatic and cytotoxic activities of many natural products.


Assuntos
Produtos Biológicos/farmacologia , Citostáticos/farmacologia , Citotoxinas/farmacologia , Reguladores de Proteínas de Ligação ao GTP/efeitos dos fármacos , Benzofenantridinas/farmacologia , Produtos Biológicos/química , Citostáticos/química , Citotoxinas/química , Humanos , Isoquinolinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Estrutura Molecular , Triterpenos Pentacíclicos , Neoplasias da Próstata/tratamento farmacológico , Triterpenos/farmacologia
14.
Chem Res Toxicol ; 26(12): 1832-9, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24229325

RESUMO

Oxidative stress has been implicated as a component of various pathologies including ischemia/reperfusion injury (IRI) and neurodegenerative diseases such as Parkinson's disease (PD) and schizophrenia. Similarly, regulator of G-protein signaling 4 (RGS4) has been implicated as an important player in each of these pathologies. RGS4, like other RGS proteins, is responsible for temporally regulating G-protein coupled receptor signaling by increasing the intrinsic GTPase activity of Gα subunit of the heterotrimeric signaling complex. In this study we evaluated whether modification by 4-hydroxy-2-nonenal (4HNE), a common lipid peroxidation product, inhibits RGS4. Using immunoprecipitation, we first determined RGS4 modification was occurring in cells at concentrations of 4HNE within reported physiological conditions. Following this determination, we evaluated modification of RGS4 by 4HNE by both Western blot and mass spectrometry (MS). Once it was established that covalent modification occurred only on cysteine containing constructs, tryptic digest followed by mass spectrometry analysis revealed modification occurs at cysteine residues 71, 148, and 183. In order to determine the effect 4HNE had on RGS4 activity, a steady-state colorimetric assay was used to analyze the GAP activity of Δ51-RGS4 as well as the cysteine null mutant. From the data, we determined that RGS4 activity can be modulated by 4HNE through modification at cysteine residues similar to previously reported small molecule inhibition of RGS4.


Assuntos
Aldeídos/farmacologia , Proteínas RGS/antagonistas & inibidores , Aldeídos/química , Células Cultivadas , Cisteína/metabolismo , Células HEK293 , Humanos , Peroxidação de Lipídeos , Modelos Moleculares , Estrutura Molecular , Estresse Oxidativo , Proteínas RGS/química , Proteínas RGS/metabolismo
15.
Neurotoxicology ; 32(4): 471-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21514317

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective loss of dopaminergic neurons, leading to a decrease of the neurotransmitter dopamine (DA). DA is metabolized by monoamine oxidase to 3,4-dihydroxyphenyacetaldehyde (DOPAL). While the mechanism of pathogenesis of PD is unknown, DOPAL has demonstrated the ability to covalently modify proteins and cause cell death at concentrations elevated from physiologic levels. Currently, the identities of protein targets of the aldehyde are unknown, but previous studies have demonstrated the ability of catechols and other DA-catabolism products to interact with and inhibit tyrosine hydroxylase (TH). Given that DOPAL is structurally related to DA and is a highly reactive electrophile, it was hypothesized to modify and inhibit TH. The data presented in this study positively identified TH as a protein target of DOPAL modification and inhibition. Furthermore, western blot analysis demonstrated a concentration-dependent decrease in antibody recognition of TH. DOPAL in cell lysate significantly inhibited TH activity as measured by decreased l-DOPA production. Inhibition of TH was semi-reversible, with the recovery of activity being time and concentration-dependent upon removal of DOPAL. These data indicate DOPAL to be a reactive DA-metabolite with the capability of modifying and inhibiting an enzyme important to DA synthesis.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Glândulas Suprarrenais/efeitos dos fármacos , Dopamina/metabolismo , Inibidores Enzimáticos/toxicidade , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/toxicidade , Glândulas Suprarrenais/enzimologia , Glândulas Suprarrenais/patologia , Animais , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Cinética , Levodopa/metabolismo , Ratos , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Toxicol Sci ; 112(1): 4-16, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19656995

RESUMO

Persistent inflammation and the generation of reactive oxygen and nitrogen species play pivotal roles in tissue injury during disease pathogenesis and as a reaction to toxicant exposures. The associated oxidative and nitrative stress promote diverse pathologic reactions including neurodegenerative disorders, atherosclerosis, chronic inflammation, cancer, and premature labor and stillbirth. These effects occur via sustained inflammation, cellular proliferation and cytotoxicity and via induction of a proangiogenic environment. For example, exposure to the ubiquitous air pollutant ozone leads to generation of reactive oxygen and nitrogen species in lung macrophages that play a key role in subsequent tissue damage. Similarly, studies indicate that genes involved in regulating oxidative stress are altered by anesthetic treatment resulting in brain injury, most notable during development. In addition to a role in tissue injury in the brain, inflammation, and oxidative stress are implicated in Parkinson's disease, a neurodegenerative disease characterized by the loss of dopamine neurons. Recent data suggest a mechanistic link between oxidative stress and elevated levels of 3,4-dihydroxyphenylacetaldehyde, a neurotoxin endogenous to dopamine neurons. These findings have significant implications for development of therapeutics and identification of novel biomarkers for Parkinson's disease pathogenesis. Oxidative and nitrative stress is also thought to play a role in creating the proinflammatory microenvironment associated with the aggressive phenotype of inflammatory breast cancer. An understanding of fundamental concepts of oxidative and nitrative stress can underpin a rational plan of treatment for diseases and toxicities associated with excessive production of reactive oxygen and nitrogen species.


Assuntos
Doença , Nitrosação , Estresse Oxidativo , Toxicologia , Lesões Encefálicas/fisiopatologia , Humanos , Lesão Pulmonar/fisiopatologia , Macrófagos/fisiologia , Mitocôndrias/fisiologia , Sepse/fisiopatologia
17.
Chem Res Toxicol ; 22(7): 1256-63, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19537779

RESUMO

Dopamine (DA) has been implicated as an endogenous neurotoxin to explain selective neurodegeneration, as observed for Parkinson's disease (PD). However, previous work demonstrated that 3,4-dihydroxyphenylacetaldehyde (DOPAL) was more toxic than DA. DOPAL is generated as a part of DA catabolism via the activity of monoamine oxidase, and the mechanism of DOPAL toxicity is proposed to involve protein modification. Previous studies have demonstrated protein reactivity via the aldehyde moiety; however, DOPAL contains two reactive functional groups (catechol and aldehyde), both with the potential for protein adduction. The goal of this work was to determine whether protein modification by DOPAL occurs via a thiol-reactive quinone generated from oxidation of the catechol, which is known to occur for DA, or if the aldehyde forms adducts with amine nucleophiles. To accomplish this objective, the reactivity of DOPAL toward N-acetyl-lysine (NAL), N-acetyl-cysteine (NAC), and two model proteins was determined. In addition, several DOPAL analogues were obtained and used for comparison of reactivity. Results demonstrate that at pH 7.4 and 37 degrees C, the order of DOPAL reactivity is NAL >> NAC and the product of NAL and DOPAL is stable in the absence of reducing agent. Moreover, DOPAL will react with model proteins, but in the presence of amine-selective modifiers citraconic anhydride and 2-iminothiolane hydrochloride, the reactivity of DOPAL toward the proteins is diminished. In addition, DOPAL-mediated protein cross-linking is observed when a model protein or a protein mixture (i.e., mitochondria lysate) is treated with DOPAL at concentrations of 5-100 microM. Protein cross-linking was diminished in the presence of ascorbate, suggesting the involvement of a quinone in DOPAL-mediated protein modification. These data indicate that DOPAL is highly reactive toward protein nucleophiles with the potential for protein cross-linking.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Aldeídos/química , Catecóis/química , Ácido 3,4-Di-Hidroxifenilacético/química , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/toxicidade , Animais , Bovinos , Reagentes de Ligações Cruzadas/química , Dopamina/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Camundongos , Mitocôndrias Hepáticas/metabolismo , Ratos , Soroalbumina Bovina/química
18.
Biochim Biophys Acta ; 1791(8): 772-80, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19393338

RESUMO

Hepatic oxidative stress and lipid peroxidation are common features of several prevalent disease states, including alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), a common component of the metabolic syndrome. These conditions are characterized in part by excessive accumulation of lipids within hepatocytes, which can lead to autocatalytic degradation of cellular lipids giving rise to electrophilic end products of lipid peroxidation. The pathobiology of reactive lipid aldehydes remains poorly understood. We therefore sought to investigate the effects of 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) on the transport and secretion of very low-density lipoprotein using HepG2 cells as a model hepatocyte system. Physiologically relevant concentrations of 4-HNE and 4-ONE rapidly disrupted cellular microtubules in a concentration-dependent manner. Interestingly, 4-ONE reduced apolipoprotein B-100 (ApoB) secretion while 4-HNE did not significantly impair secretion. Both 4-HNE and 4-ONE formed adducts with ApoB protein, but 4-HNE adducts were detectable as mono-adducts, while 4-ONE adducts were present as protein-protein cross-links. These results demonstrate that reactive aldehydes generated by lipid peroxidation can differ in their biological effects, and that these differences can be mechanistically explained by the structures of the protein adducts formed.


Assuntos
Aldeídos/farmacologia , Apolipoproteína B-100/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipídeos/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Fatores de Tempo , Tubulina (Proteína)/metabolismo
19.
Chem Res Toxicol ; 22(5): 835-41, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19388687

RESUMO

Dopamine (DA) has been implicated as an endogenous neurotoxin to explain the selective neurodegeneration as observed for Parkinson's disease (PD). In addition, oxidative stress and lipid peroxidation are hypothesized culprits in PD pathogenesis. DA undergoes catabolism by monoamine oxidase (MAO) to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is further oxidized to 3,4-dihydroxyphenylacetic acid (DOPAC) via aldehyde dehydrogenase (ALDH). As a minor and compensatory metabolic pathway, DOPAL can be reduced to 3,4-dihydroxyphenylethanol (DOPET) via cytosolic aldehyde or aldose reductase (AR). Previous studies have found DOPAL to be significantly more toxic to DA cells than DA and that the major lipid peroxidation products, that is, 4-hydroxynonenal (4HNE) and malondialdehyde (MDA), potently inhibit DOPAL oxidation via ALDH. The hypothesis of this work is that lipid peroxidation products inhibit DOPAL oxidation, yielding aberrant levels of the toxic aldehyde intermediate. To test this hypothesis, nerve growth factor-differentiated PC6-3 cells were used as a model for DA neurons. Cell viability in the presence of 4HNE and MDA (2-100 microM) was measured by MTT assay, and it was found that only 100 microM 4HNE exhibited significant cytotoxicity. Treatment of cells with varying concentrations of 4HNE and MDA resulted in reduced DOPAC production and significant elevation of DOPAL levels, suggesting inhibition of ALDH. In cells treated with 4HNE that exhibited elevated DOPAL, there was a significant increase in DOPET. However, elevated DOPET was not observed for the cells treated with MDA, suggesting MDA to be an inhibitor of AR. Using isolated cytosolic AR, it was found that MDA but not 4HNE inhibited reductase activity toward DOPAL, surprisingly. These data demonstrate that the oxidative stress products 4HNE and MDA inhibit the aldehyde biotransformation step of DA catabolism yielding elevated levels of the endogenous neurotoxin DOPAL, which may link oxidative stress to selective neurodegeneration as seen in PD.


Assuntos
Aldeídos/metabolismo , Dopamina/análise , Dopamina/metabolismo , Estresse Oxidativo , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/análise , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Aldeído Redutase/metabolismo , Aldeídos/farmacologia , Aldeídos/toxicidade , Animais , Peroxidação de Lipídeos , Malondialdeído/farmacologia , Malondialdeído/toxicidade , Oxirredução , Células PC12 , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/análise , Álcool Feniletílico/metabolismo , Ratos
20.
Chem Res Toxicol ; 20(8): 1111-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17630713

RESUMO

The modification of proteins by lipid aldehydes produced in cells undergoing oxidative stress has been proposed as an important event that contributes to the pathology of numerous diseases. In this context, the alpha,beta-unsaturated aldehydes 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) generated during membrane lipid peroxidation have been shown to adduct and inactivate numerous proteins. We report here that purified bovine brain tubulin modified with physiologically relevant concentrations of 4-HNE or 4-ONE results in significant protein cross-linking and marked inhibition of the functional capacity of tubulin polymerization. Comparative analysis demonstrated that 4-ONE is a much more potent cross-linker and inhibitor of tubulin assembly than 4-HNE. Additional experiments revealed the unique property of 4-ONE, initiation of depolymerization of intact microtubules. LC-MS/MS analysis demonstrated that Cys 347alpha, Cys 376alpha, and Cys 303beta are consistently modified by 4-HNE. The identification of target residues within tubulin modified by 4-ONE was not successful, and this was attributed to the marked tubulin cross-linking that occurred immediately after addition of 4-ONE. The modification of Lys residues by reductive propylation demonstrated that the majority of 4-HNE and 4-ONE adducts involve Lys residues, suggesting that tubulin cross-links are Lys-dependent. Taken together, these data suggest a mechanistic basis for the impairment of tubulin function by 4-HNE and 4-ONE produced as a consequence of diseases associated with chronic oxidative stress.


Assuntos
Aldeídos/química , Encéfalo/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Estresse Oxidativo/efeitos dos fármacos , Polímeros/química , Tubulina (Proteína)/efeitos dos fármacos , Aldeídos/toxicidade , Animais , Encéfalo/metabolismo , Bovinos , Cisteína/química , Eletroforese em Gel Bidimensional , Lisina/química , Espectrometria de Massas , Estresse Oxidativo/fisiologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA