Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Glycoconj J ; 41(2): 163-174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38642280

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.


Assuntos
Heparina , Polissacarídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Heparina/farmacologia , Heparina/química , Heparina/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , COVID-19/metabolismo , Ligação Proteica , Animais , Antivirais/farmacologia , Antivirais/química , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química
2.
iScience ; 27(3): 109186, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420587

RESUMO

Magnetogenetics represents a method for remote control of cellular function. Previous work suggests that generation of reactive oxygen species (ROS) initiates downstream signaling. Herein, a chemical biology approach was used to elucidate further the mechanism of radio frequency-alternating magnetic field (RF-AMF) stimulation of a TRPV1-ferritin magnetogenetics platform that leads to Ca2+ flux. RF-AMF stimulation of HEK293T cells expressing TRPV1-ferritin resulted in ∼30% and ∼140% increase in intra- and extracellular ROS levels, respectively. Mutations to specific cysteine residues in TRPV1 responsible for ROS sensitivity eliminated RF-AMF driven Ca2+-dependent transcription of secreted embryonic alkaline phosphatase (SEAP). Using a non-tethered (to TRPV1) ferritin also eliminated RF-AMF driven SEAP production, and using specific inhibitors, ROS-activated TRPV1 signaling involves protein kinase C, NADPH oxidase, and the endoplasmic reticulum. These results suggest ferritin-dependent ROS activation of TRPV1 plays a key role in the initiation of magnetogenetics, and provides relevance for potential applications in medicine and biotechnology.

3.
ACS Sens ; 9(1): 92-100, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38141036

RESUMO

Rapid, accurate, and noninvasive detection of biomarkers in saliva, urine, or nasal fluid is essential for the identification, early diagnosis, and monitoring of cancer, organ failure, transplant rejection, vascular diseases, autoimmune disorders, and infectious diseases. We report the development of an Immuno-CRISPR-based lateral flow assay (LFA) using antibody-DNA barcode complexes with magnetic enrichment of the target urinary biomarkers CXCL9 and CXCL10 for naked eye detection (ImmunoMag-CRISPR LFA). An intermediate approach involving a magnetic bead-based Immuno-CRISPR assay (ImmunoMag-CRISPR) resulted in a limit of detection (LOD) of 0.6 pg/mL for CXCL9. This value surpasses the detection limits achieved by previously reported assays. The highly sensitive detection method was then re-engineered into an LFA format with an LOD of 18 pg/mL for CXCL9, thereby enabling noninvasive early detection of acute kidney transplant rejection. The ImmunoMag-CRISPR LFA was tested on 42 clinical urine samples from kidney transplant recipients, and the assay could determine 11 positive and 31 negative urinary samples through a simple visual comparison of the test line and the control line of the LFA strip. The LFA system was then expanded to quantify the CXCL9 and CXCL10 levels in clinical urine samples from images. This approach has the potential to be extended to a wide range of point-of-care tests for highly sensitive biomarker detection.


Assuntos
Testes Imediatos , Biomarcadores/urina
4.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786709

RESUMO

The ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking. Toward these ends, we first generated a novel anti-ferritin nanobody that when fused to transient receptor potential cation channel subfamily V member 1, TRPV1, enables direct binding of the channel to endogenous ferritin in mouse and human cells. This smaller construct can be delivered in a single AAV and we validated that it robustly enables magnetically induced cell activation in vitro . In parallel, we developed a simple benchtop electromagnet capable of gating the nanobody-tagged channel in vivo . Finally, we showed that delivering these new constructs by AAV to pancreatic beta cells in combination with the benchtop magnetic field delivery stimulates glucose-stimulated insulin release to improve glucose tolerance in mice in vivo . Together, the novel anti-ferritin nanobody, nanobody-TRPV1 construct and new hardware advance the utility of magnetogenetics in animals and potentially humans.

5.
ACS Omega ; 8(16): 14610-14620, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125141

RESUMO

Surfactin, a negatively charged amphiphilic lipopeptide biosurfactant, is synthesized by the bacterium Bacillus subtilis. It consists of a cyclic heptapeptide and an 11-15C ß-hydroxy fatty acid. To probe how the modification of the molecular skeleton of surfactin influences its selectivity and activity against breast cancer, six synthetic surfactins were generated. Modifications were accomplished by conjugating amine-functionalized molecules to the Glu and Asp carboxyl moieties of the heptapeptide. The resulting synthetic surfactins provided a diverse series of molecules with differences in charge, size, and hydrophilicity. After purification and structural analysis, insights into biological activity and specificity were generated for each compound. Dose-dependent growth inhibition was determined for four tumorigenic breast cancer cell lines in monolayer and spheroid morphologies, as well as nontumorigenic fibroblasts and sheep erythrocytes, which were utilized to determine selectivity indices. Results indicated that two compounds, which have amplified anionic charge, had increased activity on breast cancer, with reduced activity on nontumorigenic fibroblasts and erythrocytes. Cationic derivative surf-ethylenediamine has increased activity on all cell lines tested. Novel correlations between dose-response activities and physicochemical properties of all compounds determined that there is a significant correlation between the critical micelle concentration and activity against multiple cell lines.

6.
Mar Drugs ; 21(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37233458

RESUMO

Sulfated glycans from marine organisms are excellent sources of naturally occurring glycosaminoglycan (GAG) mimetics that demonstrate therapeutic activities, such as antiviral/microbial infection, anticoagulant, anticancer, and anti-inflammation activities. Many viruses use the heparan sulfate (HS) GAG on the surface of host cells as co-receptors for attachment and initiating cell entry. Therefore, virion-HS interactions have been targeted to develop broad-spectrum antiviral therapeutics. Here we report the potential anti-monkeypox virus (MPXV) activities of eight defined marine sulfated glycans, three fucosylated chondroitin sulfates, and three sulfated fucans extracted from the sea cucumber species Isostichopus badionotus, Holothuria floridana, and Pentacta pygmaea, and the sea urchin Lytechinus variegatus, as well as two chemically desulfated derivatives. The inhibitions of these marine sulfated glycans on MPXV A29 and A35 protein-heparin interactions were evaluated using surface plasmon resonance (SPR). These results demonstrated that the viral surface proteins of MPXV A29 and A35 bound to heparin, which is a highly sulfated HS, and sulfated glycans from sea cucumbers showed strong inhibition of MPXV A29 and A35 interactions. The study of molecular interactions between viral proteins and host cell GAGs is important in developing therapeutics for the prevention and treatment of MPXV.


Assuntos
Glicosaminoglicanos , Pepinos-do-Mar , Animais , Glicosaminoglicanos/química , Ressonância de Plasmônio de Superfície , Sulfatos/farmacologia , Sulfatos/química , Heparitina Sulfato/farmacologia , Sulfatos de Condroitina , Heparina/farmacologia , Pepinos-do-Mar/química , Antivirais/farmacologia
7.
Front Immunol ; 14: 1106515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814920

RESUMO

Introduction: Sustained neuroinflammation is a major contributor to the progression of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD) diseases. Neuroinflammation, like other cellular processes, is affected by the circadian clock. Microglia, the resident immune cells in the brain, act as major contributors to neuroinflammation and are under the influence of the circadian clock. Microglial responses such as activation, recruitment, and cytokine expression are rhythmic in their response to various stimuli. While the link between circadian rhythms and neuroinflammation is clear, significant gaps remain in our understanding of this complex relationship. To gain a greater understanding of this relationship, the interaction between the microglial circadian clock and the enzyme NADPH Oxidase Isoform 2 (NOX2) was studied; NOX2 is essential for the production of reactive oxygen species (ROS) in oxidative stress, an integral characteristic of neuroinflammation. Methods: BV2 microglia were examined over circadian time, demonstrating oscillations of the clock genes Per2 and Bmal1 and the NOX2 subunits gp91phox and p47phox. Results: The BV2 microglial clock exerted significant control over NOX2 expression and inhibition of NOX2 enabled the microglia to retain a functional circadian clock while reducing levels of ROS and inflammatory cytokines. These trends were mirrored in mouse bone marrow-derived primary macrophages. Conclusions: NOX2 plays a crucial role in the interaction between the circadian clock and the activation of microglia/macrophages into their pro-inflammatory state, which has important implications in the control of neuroinflammation.


Assuntos
Relógios Circadianos , Microglia , Camundongos , Animais , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Neuroinflamatórias , Macrófagos/metabolismo , Citocinas/metabolismo
8.
Molecules ; 27(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144634

RESUMO

Monkeypox virus (MPXV), a member of the Orthopoxvirus genus, has begun to spread into many countries worldwide. While the prevalence of monkeypox in Central and Western Africa is well-known, the recent rise in the number of cases spread through intimate personal contact, particularly in the United States, poses a grave international threat. Previous studies have shown that cell-surface heparan sulfate (HS) is important for vaccinia virus (VACV) infection, particularly the binding of VACV A27, which appears to mediate the binding of virus to cellular HS. Some other glycosaminoglycans (GAGs) also bind to proteins on Orthopoxviruses. In this study, by using surface plasmon resonance, we demonstrated that MPXV A29 protein (a homolog of VACV A27) binds to GAGs including heparin and chondroitin sulfate/dermatan sulfate. The negative charges on GAGs are important for GAG-MPXV A29 interaction. GAG analogs, pentosan polysulfate and mucopolysaccharide polysulfate, show strong inhibition of MPXV A29-heparin interaction. A detailed understanding on the molecular interactions involved in this disease should accelerate the development of therapeutics and drugs for the treatment of MPXV.


Assuntos
Sulfatos de Condroitina , Monkeypox virus , Dermatan Sulfato , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Monkeypox virus/metabolismo , Poliéster Sulfúrico de Pentosana , Ressonância de Plasmônio de Superfície , Vaccinia virus
9.
Biotechnol Bioeng ; 119(10): 2842-2856, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822281

RESUMO

Circadian rhythms are characterized as oscillations that fluctuate based on a 24 h cycle and are responsible for regulation of physiological functions. While the internal clock synchronizes gene expression using external cues like light, a similar synchronization can be induced in vitro by incubating the cells with an increased percentage of serum followed by its rapid removal. Previous studies have suggested that synchronization of HepG2 cell line induced the rhythmic expression of drug-metabolizing enzymes (DME) most specifically the cytochrome P450 enzymes. However, there is a lack of evidence demonstrating the influence of three-dimensional microenvironment on the rhythmicity of these genes. To understand this interplay, gene expression of the circadian machinery and CYP450s were compared using the model human hepatocarcinoma cell line, HepG2. Upon serum shock synchronization, gene and protein expression of core clock regulators was assessed and rhythmic expression of these genes was demonstrated. Further insight into the interrelations between various gene pairs was obtained using statistical analysis. Using RNA sequencing, an in-depth understanding of the widespread effects of circadian regulation on genes involved in metabolic processes in the liver was obtained. This study aids in the better understanding of chronopharmacokinetic events in humans using physiologically relevant 3D culture systems.


Assuntos
Ritmo Circadiano , Fígado , Ritmo Circadiano/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Análise de Sequência de RNA
10.
Commun Biol ; 4(1): 893, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290356

RESUMO

Immunotherapy has emerged as a promising approach to treating several forms of cancer. Use of immune cells, such as natural killer (NK) cells, along with small molecule drugs and antibodies through antibody dependent cell-mediated cytotoxicity (ADCC) has been investigated as a potential combination therapy for some difficult to treat solid tumors. Nevertheless, there remains a need to develop tools that support co-culture of target cancer cells and effector immune cells in a contextually relevant three-dimensional (3D) environment to provide a rapid means to screen for and optimize ADCC-drug combinations. To that end, here we have developed a high throughput 330 micropillar-microwell sandwich platform that enables 3D co-culture of NK92-CD16 cells with pancreatic (MiaPaCa-2) and breast cancer cell lines (MCF-7 and MDA-MB-231). The platform successfully mimicked hypoxic conditions found in a tumor microenvironment and was used to demonstrate NK-cell mediated cell cytotoxicity in combination with two monoclonal antibodies; Trastuzumab and Atezolizumab. The platform was also used to show dose response behavior of target cancer cells with reduced EC50 values for paclitaxel (an anti-cancer chemotherapeutic) when treated with both NK cells and antibody. Such a platform may be used to develop more personalized cancer therapies using patient-derived cancer cells.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Esferoides Celulares/fisiologia , Análise Serial de Tecidos/instrumentação , Trastuzumab/farmacologia , Microambiente Tumoral , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/imunologia , Células MCF-7 , Análise em Microsséries
11.
Nat Chem ; 12(1): 26-35, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767992

RESUMO

DNA, when folded into nanostructures with a specific shape, is capable of spacing and arranging binding sites into a complex geometric pattern with nanometre precision. Here we demonstrate a designer DNA nanostructure that can act as a template to display multiple binding motifs with precise spatial pattern-recognition properties, and that this approach can confer exceptional sensing and potent viral inhibitory capabilities. A star-shaped DNA architecture, carrying five molecular beacon-like motifs, was constructed to display ten dengue envelope protein domain III (ED3)-targeting aptamers into a two-dimensional pattern precisely matching the spatial arrangement of ED3 clusters on the dengue (DENV) viral surface. The resulting multivalent interactions provide high DENV-binding avidity. We show that this structure is a potent viral inhibitor and that it can act as a sensor by including a fluorescent output to report binding. Our molecular-platform design strategy could be adapted to detect and combat other disease-causing pathogens by generating the requisite ligand patterns on customized DNA nanoarchitectures.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , DNA/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/isolamento & purificação , Nanoestruturas/química , Animais , Aptâmeros de Nucleotídeos/química , Benzimidazóis/química , Chlorocebus aethiops , DNA/química , Vírus da Dengue/química , Fluoresceínas/química , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Domínios Proteicos , Células Vero , Proteínas do Envelope Viral/química
12.
Stem Cells Dev ; 28(4): 278-289, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30572803

RESUMO

There is a critical need to generate functional hepatocytes to aid in liver repair and regeneration upon availability of a renewable, and potentially personalized, source of human hepatocytes (hHEP). Currently, the vast majority of primary hHEP are obtained from human tissue through cadavers. Recent advances in stem cell differentiation have opened up the possibility to obtain fully functional hepatocytes from embryonic or induced pluripotent stem cells, or adult stem cells. With respect to the latter, human bone marrow mesenchymal stromal cells (hBMSCs) can serve as a source of autogenetic and allogenic multipotent stem cells for liver repair and regeneration. A major aspect of hBMSC differentiation is the extracellular matrix (ECM) composition and, in particular, the role of glycosaminoglycans (GAGs) in the differentiation process. In this study, we examine the influence of four distinct culture conditions/protocols (T1-T4) on GAG composition and hepatic markers. α-Fetoprotein and hepatocyte nuclear factor-4α were expressed continually over 21 days of differentiation, as indicated by real time quantitative PCR analysis, while albumin (ALB) expression did not begin until day 21. Hepatocyte growth factor (HGF) appears to be more effective than activin A in promoting hepatic-like cells through the mesenchymal-epithelial transition, perhaps due to the former binding to the HGF receptor to form a unique complex that diversifies the biological functions of HGF. Of the four protocols tested, uniform hepatocyte-like morphological changes, ALB secretion, and glycogen storage were found to be highest with protocol T2, which involves both early- and late-stage combinations of growth factors. The total GAG profile of the hBMSC ECM is rich in heparan sulfate (HS) and hyaluronan, both of which fluctuate during differentiation. The GAG profile of primary hHEP showed an HS-rich ECM, and thus, it may be possible to guide hBMSC differentiation to more mature hepatocytes by controlling the GAG profile expressed by differentiating cells.


Assuntos
Diferenciação Celular , Glicosaminoglicanos/metabolismo , Hepatócitos/citologia , Células-Tronco Mesenquimais/metabolismo , Ativinas/farmacologia , Osso e Ossos/citologia , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Fator de Crescimento de Hepatócito/farmacologia , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo
13.
ACS Appl Mater Interfaces ; 10(43): 36746-36756, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30281274

RESUMO

Chemical linkers are frequently used in enzyme immobilization to improve enzyme flexibility and activity, whereas peptide linkers, although ubiquitous in protein engineering, are much less explored in enzyme immobilization. Here, we report peptide-linker-assisted noncovalent immobilization of the bacteriolytic enzyme lysostaphin (Lst) to generate anti- Staphylococcus aureus surfaces. Lst was immobilized through affinity tags onto a silica surface (glass slides) and nickel nitrilotriacetic acid (NiNTA) agarose beads via silica-binding peptides (SiBPs) or a hexahistidine tag (His-tag) fused at the C-terminus of Lst, respectively. By inserting specific peptide linkers upstream of the SiBP or His-tag, the immobilized enzymes killed >99.5% of S. aureus ATCC 6538 cells (108 CFU/mL) within 3 h in buffer and could be reused multiple times without significant loss of activity. In contrast, immobilized Lst without a peptide linker was less active/stable. Molecular modeling of Lst-linker-affinity tag constructs illustrated that the presence of the peptide linkers enhanced the molecular flexibility of the proximal Lst binding domain, which interacts with the bacterial substrate, and such increased flexibility correlated with increased antimicrobial activity. We further show that Lst immobilized onto NiNTA beads retained the ability to kill ∼99% of a 108 CFU/mL microbial challenge even in the presence of 1% of a commercial anionic surfactant, C12-14 alcohol EO 3:1 sodium sulfate, when the Lst construct contained a decapeptide linker containing glycine, serine, and alanine residues. This linker-assisted immobilization strategy could be extended to an unrelated lytic enzyme, the endolysin PlyPH, to target Bacillus anthracis Sterne cells either in buffer or in the presence of anionic surfactants. Our approach, therefore, provides a facile route to the use of antimicrobial enzymes on surfaces.


Assuntos
Antibacterianos/farmacologia , Enzimas Imobilizadas/farmacologia , Peptídeos/química , Bacillus anthracis , Vidro , Lisostafina/farmacologia , Testes de Sensibilidade Microbiana , Domínios Proteicos , Engenharia de Proteínas , Estrutura Secundária de Proteína , Sefarose/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Tensoativos
14.
Arch Toxicol ; 92(3): 1295-1310, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29167929

RESUMO

Human liver contains various oxidative and conjugative enzymes that can convert nontoxic parent compounds to toxic metabolites or, conversely, toxic parent compounds to nontoxic metabolites. Unlike primary hepatocytes, which contain myriad drug-metabolizing enzymes (DMEs), but are difficult to culture and maintain physiological levels of DMEs, immortalized hepatic cell lines used in predictive toxicity assays are easy to culture, but lack the ability to metabolize compounds. To address this limitation and predict metabolism-induced hepatotoxicity in high-throughput, we developed an advanced miniaturized three-dimensional (3D) cell culture array (DataChip 2.0) and an advanced metabolizing enzyme microarray (MetaChip 2.0). The DataChip is a functionalized micropillar chip that supports the Hep3B human hepatoma cell line in a 3D microarray format. The MetaChip is a microwell chip containing immobilized DMEs found in the human liver. As a proof of concept for generating compound metabolites in situ on the chip and rapidly assessing their toxicity, 22 model compounds were dispensed into the MetaChip and sandwiched with the DataChip. The IC50 values obtained from the chip platform were correlated with rat LD50 values, human C max values, and drug-induced liver injury categories to predict adverse drug reactions in vivo. As a result, the platform had 100% sensitivity, 86% specificity, and 93% overall predictivity at optimum cutoffs of IC50 and C max values. Therefore, the DataChip/MetaChip platform could be used as a high-throughput, early stage, microscale alternative to conventional in vitro multi-well plate platforms and provide a rapid and inexpensive assessment of metabolism-induced toxicity at early phases of drug development.


Assuntos
Técnicas de Cultura de Células/métodos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Enzimas/metabolismo , Análise Serial de Proteínas/métodos , Testes de Toxicidade/métodos , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Enzimas/análise , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , Dispositivos Lab-On-A-Chip , Dose Letal Mediana , Neoplasias Hepáticas/patologia , Miniaturização , Análise Serial de Proteínas/instrumentação , Ratos , Sensibilidade e Especificidade , Testes de Toxicidade/instrumentação
15.
Biochemistry ; 56(8): 1151-1162, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28151637

RESUMO

In February 2016, the World Health Organization declared a Public Health Emergency of International Concern on Zika Virus (ZIKV), because of its association with severe fetal anomalies of congenitally infected humans. This has led to urgent efforts by academic, federal, and industry research groups to improve our understanding of the pathogenesis of ZIKV and to develop detection methods, therapeutic strategies, and vaccines. Although we still do not have the entire picture of the pathogenesis of ZIKV, extensive research has been conducted on related pathogenic flaviviruses (i.e., dengue virus, West Nile virus, and yellow fever virus). Binding to glycosaminoglycans (GAGs) through its envelope protein is the first step in successful host cell invasion of dengue virus. In this study, we examined ZIKV envelope protein (ZIKV E) binding to GAGs in a real time interaction study using surface plasmon resonance (SPR) to explore the role of GAGs in host cell entry of ZIKV into placenta and brain. ZIKV E strongly binds (KD = 443 nM) pharmaceutical heparin (HP), a highly sulfated GAG, and binds with lower avidity to less sulfated GAGs, suggesting that the ZIKV E-GAG interaction may be electrostatically driven. Using SPR competition assays with various chain length HP oligosaccharides (from 4 to 18 saccharide units in length), we observed that ZIKV E preferentially binds to longer HP oligosaccharides (with 8-18 saccharides). Next, we examined GAGs prepared from human placentas to determine if they bound ZIKV E, possibly mediating placental cell invasion of ZIKV. Compositional analysis of these GAGs as well as SPR binding studies showed that both chondroitin sulfate and heparan sulfate GAGs, present on the placenta, showed low-micromolar interactions with ZIKV E. Both porcine brain CS and HS also showed micromolar binding with ZIKV E. Moreover, heparan sulfate with a higher TriS content, the dominant repeating unit of HP, shows a high affinity for ZIKV E. These results suggest that GAGs may be utilized as attachment factors for host cell entry of Zika virus as they do in other pathogenic flaviviruses. They may also assist us in advancing our understanding of the pathogenesis of ZIKV and guide us in designing therapeutics to combat ZIKV with more insight.


Assuntos
Glicosaminoglicanos/metabolismo , Proteínas do Envelope Viral/metabolismo , Zika virus/metabolismo , Animais , Encéfalo/metabolismo , Dissacarídeos/metabolismo , Feminino , Humanos , Modelos Moleculares , Placenta/metabolismo , Gravidez , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Suínos , Proteínas do Envelope Viral/química
16.
PeerJ Comput Sci ; 3: e106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-37133296

RESUMO

Metastatic cutaneous melanoma is an aggressive skin cancer with some progression-slowing treatments but no known cure. The omics data explosion has created many possible drug candidates; however, filtering criteria remain challenging, and systems biology approaches have become fragmented with many disconnected databases. Using drug, protein and disease interactions, we built an evidence-weighted knowledge graph of integrated interactions. Our knowledge graph-based system, ReDrugS, can be used via an application programming interface or web interface, and has generated 25 high-quality melanoma drug candidates. We show that probabilistic analysis of systems biology graphs increases drug candidate quality compared to non-probabilistic methods. Four of the 25 candidates are novel therapies, three of which have been tested with other cancers. All other candidates have current or completed clinical trials, or have been studied in in vivo or in vitro. This approach can be used to identify candidate therapies for use in research or personalized medicine.

17.
Acta Biomater ; 35: 206-14, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26911883

RESUMO

Virus-like particles (VLPs) are the product of the self-assembly, either in vivo or in vitro, of structural components of viral capsids. These particles are excellent scaffolds for surface display of biomolecules that can be used in vaccine development and tissue-specific drug delivery. Surface engineering of VLPs requires structural stability and chemical reactivity. Herein, we report the enhanced assembly, colloidal stabilization and fluorescent labeling of primate erythroparvovirus 1 (PE1V), generally referred to as parvovirus B19. In vitro assembly of the VP2 protein of PE1V produces VLPs, which are prone to flocculate and hence undergo limited chemical modification by thiol-specific reagents like the fluorogenic monobromobimane (mBBr). We determined that the addition of 0.2M l-arginine during the assembly process produced an increased yield of soluble VLPs with good dispersion stability. Fluorescent labeling of VLPs suspended in phosphate buffered saline (PBS) added with 0.2M l-Arg was achieved in significantly shorter times than the flocculated VLPs assembled in only PBS buffer. Finally, to demonstrate the potential application of this approach, mBBr-labeled VLPs were successfully used to tag human hepatoma HepG2 cells. This new method for assembly and labeling PE1V VLPs eases its applications and provides insights on the manipulation of this biomaterial for further developments. STATEMENT OF SIGNIFICANCE: Application of virus-derived biomaterials sometimes requires surface modification for diverse purposes, including enhanced cell-specific interaction, the inclusion of luminescent probes for bioimaging, or the incorporation of catalytic properties for the production of enzyme nanocarriers. In this research, we reported for the first time the colloidal stabilization of the primate erythroparvovirus 1 (PE1V) virus-like particles (VLPs). Also, we report the chemical modification of the natural Cys residues located on the surface of these VLPs with a fluorescent probe, as well as its application for tagging hepatoma cells in vitro. Keeping in mind that PE1V is a human pathogen, virus-host interactions already exist in human cells, and they can be exploited for therapeutic and research aims. This study will impact on the speed in which the scientific community will be able to manipulate PE1V VLPs for diverse purposes. Additionally, this study may provide insights on the colloidal properties of these VLPs as well as in the effect of different protein additives used for protein stabilization.


Assuntos
Coloides/química , Parvoviridae/química , Engenharia de Proteínas/métodos , Vírion/química , Animais , Arginina/farmacologia , Compostos Bicíclicos com Pontes/metabolismo , Centrifugação , Cristalografia por Raios X , Endocitose , Filtração , Fluorescência , Glicerol/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Primatas , Compostos de Sulfidrila/metabolismo , Propriedades de Superfície , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/efeitos dos fármacos , Vírion/ultraestrutura
18.
Biotechnol Bioeng ; 112(12): 2417-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26109045

RESUMO

Plant polyphenols are known to have varying antimicrobial potencies, including direct antibacterial activity, synergism with antibiotics and suppression of bacterial virulence. We performed the in vitro oligomerization of resveratrol catalyzed by soybean peroxidase, and the two isomers (resveratrol-trans-dihydrodimer and pallidol) produced were tested for antimicrobial activity. The resveratrol-trans-dihydrodimer displayed antimicrobial activity against the Gram-positive bacteria Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus (minimum inhibitory concentration (MIC) = 15.0, 125, and 62.0 µM, respectively) and against Gram-negative Escherichia coli (MIC = 123 µM, upon addition of the efflux pump inhibitor Phe-Arg-ß-naphthylamide). In contrast, pallidol had no observable antimicrobial activity against all tested strains. Transcriptomic analysis implied downregulation of ABC transporters, genes involved in cell division and DNA binding proteins. Flow cytometric analysis of treated cells revealed a rapid collapse in membrane potential and a substantial decrease in total DNA content. The active dimer showed >90% inhibition of DNA gyrase activity, in vitro, by blocking the ATP binding site of the enzyme. We thus propose that the resveratrol-trans-dihydrodimer acts to: (1) disrupt membrane potential; and (2) inhibit DNA synthesis. In summary, we introduce the mechanisms of action and the initial evaluation of an active bactericide, and a platform for the development of polyphenolic antimicrobials.


Assuntos
Anti-Infecciosos/metabolismo , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peroxidase/metabolismo , Estilbenos/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/fisiologia , Perfilação da Expressão Gênica , Bactérias Gram-Positivas/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxirredução , Resveratrol , Glycine max/enzimologia
19.
Biomaterials ; 55: 96-109, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934455

RESUMO

Nanoscale surface topographies are known to have a profound influence on cell behavior, including cell guidance, migration, morphology, proliferation, and differentiation. In this study, we have observed the behavior of human mesenchymal stem cells cultured on a range of tailored porous SiO2 and TiO2 nanostructured surface coatings fabricated via glancing angle electron-beam deposition. By controlling the physical vapor deposition angle during fabrication, we could control systematically the deposited coating porosity, along with associated topographic features. Immunocytochemistry and image analysis quantitatively revealed the number of adherent cells, as well as their basic cellular morphology, on these surfaces. Signaling pathway studies showed that even with subtle changes in nanoscale surface structures, the behavior of mesenchymal stem cells was strongly influenced by the precise surface structures of these porous coatings.


Assuntos
Técnicas de Cultura de Células/instrumentação , Células-Tronco Mesenquimais/citologia , Dióxido de Silício/química , Titânio/química , Materiais Biocompatíveis/química , Adesão Celular , Diferenciação Celular , Proliferação de Células , Separação Celular , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanoestruturas/química , Porosidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Propriedades de Superfície
20.
Nat Commun ; 5: 3739, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24799042

RESUMO

Differential expression of various drug-metabolizing enzymes (DMEs) in the human liver may cause deviations of pharmacokinetic profiles, resulting in interindividual variability of drug toxicity and/or efficacy. Here, we present the 'Transfected Enzyme and Metabolism Chip' (TeamChip), which predicts potential metabolism-induced drug or drug-candidate toxicity. The TeamChip is prepared by delivering genes into miniaturized three-dimensional cellular microarrays on a micropillar chip using recombinant adenoviruses in a complementary microwell chip. The device enables users to manipulate the expression of individual and multiple human metabolizing-enzyme genes (such as CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1 and UGT1A4) in THLE-2 cell microarrays. To identify specific enzymes involved in drug detoxification, we created 84 combinations of metabolic-gene expressions in a combinatorial fashion on a single microarray. Thus, the TeamChip platform can provide critical information necessary for evaluating metabolism-induced toxicity in a high-throughput manner.


Assuntos
Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Fígado/enzimologia , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA