Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(1): 19-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565252

RESUMO

Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.


Assuntos
DNA Girase , DNA , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/genética , Bactérias/genética , Bactérias/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Trifosfato de Adenosina/metabolismo , Epigênese Genética , DNA Super-Helicoidal , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
2.
Mol Microbiol ; 115(6): 1410-1429, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33539568

RESUMO

DNA gyrase is an essential type II topoisomerase that is composed of two subunits, GyrA and GyrB, and has an A2 B2 structure. Although the A and B subunits are required in equal proportions to form DNA gyrase, the gyrA and gyrB genes that encode them in Salmonella (and in many other bacteria) are at separate locations on the chromosome, are under separate transcriptional control, and are present in different copy numbers in rapidly growing bacteria. In wild-type Salmonella, gyrA is near the chromosome's replication terminus, while gyrB is near the origin. We generated a synthetic gyrBA operon at the oriC-proximal location of gyrB to test the significance of the gyrase gene position for Salmonella physiology. Although the strain producing gyrase from an operon had a modest alteration to its DNA supercoiling set points, most housekeeping functions were unaffected. However, its SPI-2 virulence genes were expressed at a reduced level and its survival was reduced in macrophage. Our data reveal that the horizontally acquired SPI-2 genes have a greater sensitivity to disturbance of DNA topology than the core genome and we discuss its significance in the context of Salmonella genome evolution and the gyrA and gyrB gene arrangements found in other bacteria.


Assuntos
DNA Girase/genética , DNA Bacteriano/genética , DNA Super-Helicoidal/genética , Genoma Bacteriano/genética , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Girase/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Transcrição Gênica/genética
3.
Ann Glob Health ; 86(1): 151, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33354517

RESUMO

Background: Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.


Assuntos
Ecossistema , Plásticos , Animais , Humanos , Concentração de Íons de Hidrogênio , Masculino , Oceanos e Mares , Água do Mar , Poluição da Água/prevenção & controle
4.
J Mol Microbiol Biotechnol ; 24(5-6): 316-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25732335

RESUMO

Nucleoid-associated proteins typically are abundant, low-molecular-mass polypeptides that bind DNA and alter its shape and its ability to participate in transactions such as transcription. Some can bind RNA and influence the gene expression profile of the cell at a posttranscriptional level. They also have the potential to model and remodel the structure of the nucleoid, contributing to chromosome packaging within the cell. Some nucleoid-associated proteins have been implicated in the facilitation of chromosome evolution through their ability to silence transcription, allowing new genes to be integrated into the nucleoid both physically and in a regulatory sense. The dynamic composition of the population of nucleoid-associated proteins in model bacteria such as Escherichia coli and Salmonella enterica links nucleoid structure and the global regulation of gene expression, enhancing microbial competitive fitness and survival in complex environments.


Assuntos
Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella enterica/metabolismo , Transcrição Gênica , Cromossomos Bacterianos/ultraestrutura , DNA Bacteriano/ultraestrutura , Escherichia coli/genética , Salmonella enterica/genética
5.
Microbiology (Reading) ; 157(Pt 4): 1075-1087, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21212121

RESUMO

The role of the HU nucleoid-associated proteins in gene regulation was examined in Salmonella enterica serovar Typhimurium. The dimeric HU protein consists of different combinations of its α and ß subunits. Transcriptomic analysis was performed with cultures growing at 37 °C at 1, 4 and 6 h after inoculation with mutants that lack combinations of HU α and HU ß. Distinct but overlapping patterns of gene expression were detected at each time point for each of the three mutants, revealing not one but three regulons of genes controlled by the HU proteins. Mutations in the hup genes altered the expression of regulatory and structural genes in both the SPI1 and SPI2 pathogenicity islands. The hupA hupB double mutant was defective in invasion of epithelial cell lines and in its ability to survive in macrophages. The double mutant also had defective swarming activity and a competitive fitness disadvantage compared with the wild-type. In contrast, inactivation of just the hupB gene resulted in increased fitness and correlated with the upregulation of members of the RpoS regulon in exponential-phase cultures. Our data show that HU coordinates the expression of genes involved in central metabolism and virulence and contributes to the success of S. enterica as a pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Salmonella typhimurium/fisiologia , Estresse Fisiológico , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Cricetinae , Proteínas de Ligação a DNA/genética , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ilhas Genômicas , Locomoção , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Salmonella typhimurium/genética , Temperatura , Fatores de Tempo , Virulência
6.
Mol Microbiol ; 66(1): 237-51, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17784910

RESUMO

The classic expression pattern of the Fis global regulatory protein during batch culture consists of a high peak in the early logarithmic phase of growth, followed by a sharp decrease through mid-exponential growth phase until Fis is almost undetectable at the end of the exponential phase. We discovered that this pattern is contingent on the growth regime. In Salmonella enterica serovar Typhimurium cultures grown in non-aerated SPI1-inducing conditions, Fis can be detected readily in stationary phase. On the other hand, cultures grown with standard aeration showed the classic Fis expression pattern. Sustained Fis expression in non-aerated cultures was also detected in some Escherichia coli strains, but not in others. This novel pattern of Fis expression was independent of sequence differences in the fis promoter regions of Salmonella and E. coli. Instead, a clear negative correlation between the expression of the Fis protein and of the stress-and-stationary-phase sigma factor RpoS was observed in a variety of strains. An rpoS mutant displayed elevated levels of Fis and had a higher frequency of epithelial cell invasion under these growth conditions. We discuss a model whereby Fis and RpoS levels vary in response to environmental signals allowing the expression and repression of SPI1 invasion genes.


Assuntos
Fator Proteico para Inversão de Estimulação/biossíntese , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/fisiologia , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Western Blotting , Células CHO , Células CACO-2 , Cricetinae , Cricetulus , Células Epiteliais/microbiologia , Escherichia coli/genética , Escherichia coli/fisiologia , Deleção de Genes , Humanos , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Fator sigma/biossíntese , Fator sigma/genética , Transcrição Gênica
7.
Mol Microbiol ; 62(3): 869-82, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16999831

RESUMO

Adaptation of bacterial pathogens to an intracellular environment requires resetting of the expression levels of a wide range of both virulence and housekeeping genes. We investigated the possibility that changes in DNA supercoiling could modulate the expression of genes known to be important in the intracellular growth of the pathogen Salmonella enterica serovar Typhimurium. Our data show that DNA becomes relaxed when Salmonella grows in murine macrophage but not in epithelial cells, indicating that DNA supercoiling plays a role in discrimination between two types of intracellular environment. The ssrA regulatory gene within the SPI-2 pathogenicity island that is required for survival in macrophage was found to be upregulated by DNA relaxation. This enhancement of expression also required the Fis nucleoid-associated protein. Manipulating the level of the Fis protein modulated both the level of DNA supercoiling and ssrA transcription. We discuss a model of bacterial intracellular adaptation in which Fis and DNA supercoiling collaborate to fine-tune virulence gene expression.


Assuntos
DNA Bacteriano/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Fatores de Transcrição/metabolismo , Virulência/genética , Animais , Linhagem Celular , DNA Bacteriano/química , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Cinética , Macrófagos/citologia , Macrófagos/microbiologia , Camundongos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Bacteriano/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA