Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 671, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001237

RESUMO

Since Acanthamoeba polyphaga mimivirus (APMV) was identified in 2003, several other giant viruses of amoebae have been isolated, highlighting the uniqueness of this group. In this context, the tupanviruses were recently isolated from extreme environments in Brazil, presenting virions with an outstanding tailed structure and genomes containing the most complete set of translation genes of the virosphere. Unlike other giant viruses of amoebae, tupanviruses present a broad host range, being able to replicate not only in Acanthamoeba sp. but also in other amoebae, such as Vermamoeba vermiformis, a widespread, free-living organism. Although the Tupanvirus cycle in A. castellanii has been analyzed, there are no studies concerning the replication of tupanviruses in other host cells. Here, we present an in-depth microscopic study of the replication cycle of Tupanvirus in V. vermiformis. Our results reveal that Tupanvirus can enter V. vermiformis and generate new particles with similar morphology to when infecting A. castellanii cells. Tupanvirus establishes a well-delimited electron-dense viral factory in V. vermiformis, surrounded by lamellar structures, which appears different when compared with different A. castellanii cells. Moreover, viral morphogenesis occurs entirely in the host cytoplasm within the viral factory, from where complete particles, including the capsid and tail, are sprouted. Some of these particles have larger tails, which we named "supertupans." Finally, we observed the formation of defective particles, presenting abnormalities of the tail and/or capsid. Taken together, the data presented here contribute to a better understanding of the biology of tupanviruses in previously unexplored host cells.

2.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31019058

RESUMO

Viruses depend on cells to replicate and can cause considerable damage to their hosts. However, hosts have developed a plethora of antiviral mechanisms to counterattack or prevent viral replication and to maintain homeostasis. Advantageous features are constantly being selected, affecting host-virus interactions and constituting a harsh race for supremacy in nature. Here, we describe a new antiviral mechanism unveiled by the interaction between a giant virus and its amoebal host. Faustovirus mariensis infects Vermamoeba vermiformis, a free-living amoeba, and induces cell lysis to disseminate into the environment. Once infected, the cells release a soluble factor that triggers the encystment of neighbor cells, preventing their infection. Remarkably, infected cells stimulated by the factor encyst and trap the viruses and viral factories inside cyst walls, which are no longer viable and cannot excyst. This unprecedented mechanism illustrates that a plethora of antiviral strategies remains to be discovered in nature.IMPORTANCE Understanding how viruses of microbes interact with its hosts is not only important from a basic scientific point of view but also for a better comprehension of the evolution of life. Studies involving large and giant viruses have revealed original and outstanding mechanisms concerning virus-host relationships. Here, we report a mechanism developed by Vermamoeba vermiformis, a free-living amoeba, to reduce Faustovirus mariensis dissemination. Once infected, V. vermiformis cells release a factor that induces the encystment of neighbor cells, preventing infection of further cells and/or trapping the viruses and viral factories inside the cyst walls. This phenomenon reinforces the need for more studies regarding large/giant viruses and their hosts.


Assuntos
Amebozoários/virologia , Vírus Gigantes/fisiologia , Replicação Viral/fisiologia , Vírus não Classificados/fisiologia
3.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118120

RESUMO

The inclusion of Mimiviridae members in the putative monophyletic nucleocytoplasmic large DNA virus (NCLDV) group is based on genomic and phylogenomic patterns. This shows that, along with other viral families, they share a set of genes known as core or "hallmark genes," including the gene for the major capsid protein (MCP). Although previous studies have suggested that the maturation of mimivirus MCP transcripts is dependent on splicing, there is little information about the processing of this transcript in other mimivirus isolates. Here we report the characterization of a new mimivirus isolate, called Kroon virus (KV) mimivirus. Analysis of the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates revealed a remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. In addition, sequencing of KV and Acanthamoeba polyphaga mimivirus (APMV) MCP transcripts has shown that inside the family, even related giant viruses may present different ways to process the MCP mRNA. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.IMPORTANCE Mimivirus isolates have been obtained by prospecting studies since 2003. Based on genomic and phylogenomic studies of conserved genes, these viruses have been clustered together with members of six other viral families. Although the major capsid protein (MCP) gene is an important member of the so-called "hallmark genes," there is little information about the processing and structure of this gene in many mimivirus isolates. In this work, we have analyzed the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates; these genes showed remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.


Assuntos
Proteínas do Capsídeo/genética , Evolução Molecular , Regulação Viral da Expressão Gênica , Mimiviridae/genética , Splicing de RNA , Transcrição Gênica , Genoma Viral , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Mimiviridae/ultraestrutura , Filogenia , RNA Viral , Replicação Viral , Microbiologia da Água
4.
J Virol ; 89(23): 11812-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378162

RESUMO

UNLABELLED: Acanthamoeba polyphaga mimivirus (APMV) is a giant virus from the Mimiviridae family. It has many unusual features, such as a pseudoicosahedral capsid that presents a starfish shape in one of its vertices, through which the ∼ 1.2-Mb double-stranded DNA is released. It also has a dense glycoprotein fibril layer covering the capsid that has not yet been functionally characterized. Here, we verified that although these structures are not essential for viral replication, they are truly necessary for viral adhesion to amoebae, its natural host. In the absence of fibrils, APMV had a significantly lower level of attachment to the Acanthamoeba castellanii surface. This adhesion is mediated by glycans, specifically, mannose and N-acetylglucosamine (a monomer of chitin and peptidoglycan), both of which are largely distributed in nature as structural components of several organisms. Indeed, APMV was able to attach to different organisms, such as Gram-positive bacteria, fungi, and arthropods, but not to Gram-negative bacteria. This prompted us to predict that (i) arthropods, mainly insects, might act as mimivirus dispersers and (ii) by attaching to other microorganisms, APMV could be ingested by amoebae, leading to the successful production of viral progeny. To date, this mechanism has never been described in the virosphere. IMPORTANCE: APMV is a giant virus that is both genetically and structurally complex. Its size is similar to that of small bacteria, and it replicates inside amoebae. The viral capsid is covered by a dense glycoprotein fibril layer, but its function has remained unknown, until now. We found that the fibrils are not essential for mimivirus replication but that they are truly necessary for viral adhesion to the cell surface. This interaction is mediated by glycans, mainly N-acetylglucosamine. We also verified that APMV is able to attach to bacteria, fungi, and arthropods. This indicates that insects might act as mimivirus dispersers and that adhesion to other microorganisms could facilitate viral ingestion by amoebae, a mechanism never before described in the virosphere.


Assuntos
Acanthamoeba/virologia , Glicoproteínas/metabolismo , Mimiviridae/fisiologia , Proteínas Virais/metabolismo , Ligação Viral , Acanthamoeba/fisiologia , Acanthamoeba/ultraestrutura , Acetilglucosamina/metabolismo , Análise de Variância , Manose/metabolismo , Microscopia Eletrônica de Transmissão , Especificidade da Espécie , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA