Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39229217

RESUMO

Disruption of processes involved in tissue development and homeostatic self-renewal is increasingly implicated in cancer initiation, progression, and recurrence. The adrenal cortex is a dynamic tissue that undergoes life-long turnover. Here, using genetic fate mapping and murine adrenocortical carcinoma (ACC) models, we have identified a population of adrenocortical stem cells that express delta-like non-canonical Notch ligand 1 (DLK1). These cells are active during development, near dormant postnatally but are re-expressed in ACC. In a study of over 200 human ACC samples, we have shown DLK1 expression is ubiquitous and is an independent prognostic marker of recurrence-free survival. Paradoxically, despite its progenitor role, spatial transcriptomic analysis has identified DLK1 expressing cell populations to have increased steroidogenic potential in human ACC, a finding also observed in four human and one murine ACC cell lines. Finally, the cleavable DLK1 ectodomain is measurable in patients' serum and can discriminate between ACC and other adrenal pathologies with high sensitivity and specificity to aid in diagnosis and follow-up of ACC patients. These data demonstrate a prognostic role for DLK1 in ACC, detail its hierarchical expression in homeostasis and oncogenic transformation and propose a role for its use as a biomarker in this malignancy.

3.
Mol Syst Biol ; 17(9): e10105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34528760

RESUMO

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia , Análise de Célula Única
4.
PLoS One ; 16(7): e0253178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34232958

RESUMO

Bladder cancer, one of the most prevalent malignancies worldwide, remains hard to classify due to a staggering molecular complexity. Despite a plethora of diagnostic tools and therapies, it is hard to outline the key steps leading up to the transition from high-risk non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC). Carcinogen-induced murine models can recapitulate urothelial carcinogenesis and natural anti-tumor immunity. Herein, we have developed and profiled a novel model of progressive NMIBC based on 10 weeks of OH-BBN exposure in hepatocyte growth factor/cyclin dependent kinase 4 (R24C) (Hgf-Cdk4R24C) mice. The profiling of the model was performed by histology grading, single cell transcriptomic and proteomic analysis, while the derivation of a tumorigenic cell line was validated and used to assess in vivo anti-tumor effects in response to immunotherapy. Established NMIBC was present in females at 10 weeks post OH-BBN exposure while neoplasia was not as advanced in male mice, however all mice progressed to MIBC. Single cell RNA sequencing analysis revealed an intratumoral heterogeneity also described in the human disease trajectory. Moreover, although immune activation biomarkers were elevated in urine during carcinogen exposure, anti-programmed cell death protein 1 (anti-PD1) monotherapy did not prevent tumor progression. Furthermore, anti-PD1 immunotherapy did not control the growth of subcutaneous tumors formed by the newly derived urothelial cancer cell line. However, treatment with CpG-oligodeoxynucleotides (ODN) significantly decreased tumor volume, but only in females. In conclusion, the molecular map of this novel preclinical model of bladder cancer provides an opportunity to further investigate pharmacological therapies ahead with regards to both targeted drugs and immunotherapies to improve the strategies of how we should tackle the heterogeneous tumor microenvironment in urothelial bladder cancer to improve responses rates in the clinic.


Assuntos
Cálculos da Bexiga Urinária/metabolismo , Animais , Butilidroxibutilnitrosamina/farmacologia , Carcinógenos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Proteinúria/urina , Proteômica/métodos , Análise de Sequência de RNA , Análise de Célula Única , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Cálculos da Bexiga Urinária/induzido quimicamente , Cálculos da Bexiga Urinária/urina , Urotélio/efeitos dos fármacos , Urotélio/metabolismo , Urotélio/patologia
5.
FASEB J ; 35(4): e21464, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724574

RESUMO

Chemical castration in prostate cancer can be achieved with gonadotropin-releasing hormone (GnRH) agonists or antagonists. Their effects differ by the initial flare of gonadotropin and testosterone secretion with agonists and the immediate pituitary-testicular suppression by antagonists. While both suppress luteinizing hormone (LH) and follicle-stimulating hormone (FSH) initially, a rebound in FSH levels occurs during agonist treatment. This rebound is potentially harmful, taken the expression of FSH receptors (R) in prostate cancer tissue. We herein assessed the role of FSH in promoting the growth of androgen-independent (PC-3, DU145) and androgen-dependent (VCaP) human prostate cancer cell line xenografts in nude mice. Gonadotropins were suppressed with the GnRH antagonist degarelix, and effects of add-back human recombinant FSH were assessed on tumor growth. All tumors expressed GnRHR and FSHR, and degarelix treatment suppressed their growth. FSH supplementation reversed the degarelix-evoked suppression of PC-3 tumors, both in preventive (degarelix and FSH treatment started upon cell inoculation) and therapeutic (treatments initiated 3 weeks after cell inoculation) setting. A less marked, though significant FSH effect occurred in DU145, but not in VCaP xenografts. FSHR expression in the xenografts supports direct FSH stimulation of tumor growth. Testosterone supplementation, to maintain the VCaP xenografts, apparently masked the FSH effect on their growth. Treatment with the LH analogue hCG did not affect PC-3 tumor growth despite their expression of luteinizing hormone/choriongonadotropin receptor. In conclusion, FSH, but not LH, may directly stimulate the growth of androgen-independent prostate cancer, suggesting that persistent FSH suppression upon GnRH antagonist treatment offers a therapeutic advantage over agonist.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Xenoenxertos/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Androgênios/farmacologia , Animais , Linhagem Celular , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Masculino , Camundongos Nus , Neoplasias da Próstata/metabolismo , Receptores do FSH , Testículo/metabolismo , Testosterona/farmacologia
6.
Brain Commun ; 2(1): fcaa002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954276

RESUMO

Glioblastoma is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumour suppressors has not been thoroughly studied as yet as a glioblastoma therapeutic strategy. Tumour suppressor protein phosphatase 2A is inhibited by non-genetic mechanisms in glioblastoma, and thus, it would be potentially amendable for therapeutic reactivation. Here, we demonstrate that small molecule activators of protein phosphatase 2A, NZ-8-061 and DBK-1154, effectively cross the in vitro model of blood-brain barrier, and in vivo partition to mouse brain tissue after oral dosing. In vitro, small molecule activators of protein phosphatase 2A exhibit robust cell-killing activity against five established glioblastoma cell lines, and nine patient-derived primary glioma cell lines. Collectively, these cell lines have heterogeneous genetic background, kinase inhibitor resistance profile and stemness properties; and they represent different clinical glioblastoma subtypes. Moreover, small molecule activators of protein phosphatase 2A were found to be superior to a range of kinase inhibitors in their capacity to kill patient-derived primary glioma cells. Oral dosing of either of the small molecule activators of protein phosphatase 2A significantly reduced growth of infiltrative intracranial glioblastoma tumours. DBK-1154, with both higher degree of brain/blood distribution, and more potent in vitro activity against all tested glioblastoma cell lines, also significantly increased survival of mice bearing orthotopic glioblastoma xenografts. In summary, this report presents a proof-of-principle data for blood-brain barrier-permeable tumour suppressor reactivation therapy for glioblastoma cells of heterogenous molecular background. These results also provide the first indications that protein phosphatase 2A reactivation might be able to challenge the current paradigm in glioblastoma therapies which has been strongly focused on targeting specific genetically altered cancer drivers with highly specific inhibitors. Based on demonstrated role for protein phosphatase 2A inhibition in glioblastoma cell drug resistance, small molecule activators of protein phosphatase 2A may prove to be beneficial in future glioblastoma combination therapies.

7.
Hum Mol Genet ; 29(17): 2813-2830, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32716031

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders leading to infertility in women affecting reproductive, endocrine and metabolic systems. Recent genomewide association studies on PCOS cohorts revealed a single nucleotide polymorphism (SNP) in the ERBB4 receptor tyrosine kinase 4 gene, but its role in ovary development or during folliculogenesis remains poorly understood. Since no genetic animal models mimicking all PCOS reproductive features are available, we conditionally deleted Erbb4 in murine granulosa cells (GCs) under the control of Amh promoter. While we have demonstrated that Erbb4 deletion displayed aberrant ovarian function by affecting the reproductive function (asynchronous oestrous cycle leading to few ovulations and subfertility) and metabolic function (obesity), their ovaries also present severe structural and functional abnormalities (impaired oocyte development). Hormone analysis revealed an up-regulation of serum luteinizing hormone, hyperandrogenism, increased production of ovarian and circulating anti-Müllerian hormone. Our data implicate that Erbb4 deletion in GCs leads to defective intercellular junctions between the GCs and oocytes, causing changes in the expression of genes regulating the local microenvironment of the follicles. In vitro culture assays reducing the level of Erbb4 via shRNAs confirm that Erbb4 is essential for regulating Amh level. In conclusion, our results indicate a functional role for Erbb4 in the ovary, especially during folliculogenesis and its reduced expression plays an important role in reproductive pathophysiology, such as PCOS development.


Assuntos
Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Síndrome do Ovário Policístico/genética , Receptor ErbB-4/genética , Animais , Hormônio Antimülleriano/sangue , Microambiente Celular/genética , Feminino , Humanos , Camundongos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/patologia , Polimorfismo de Nucleotídeo Único/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptor ErbB-4/antagonistas & inibidores , Microambiente Tumoral/genética
8.
Cell Rep ; 32(2): 107897, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668248

RESUMO

Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells. We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Terapia de Alvo Molecular , Medicina de Precisão , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Heterogeneidade Genética , Genoma Humano , Glioblastoma/genética , Humanos , Camundongos Endogâmicos BALB C , Mutação/genética , Inibidores de Proteassoma/farmacologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
9.
Nat Commun ; 11(1): 71, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900415

RESUMO

Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.


Assuntos
Antineoplásicos/administração & dosagem , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
10.
Endocr Relat Cancer ; 26(1): 103-117, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400009

RESUMO

Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11-13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/uso terapêutico , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Antagonistas de Hormônios/farmacologia , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo
11.
J Endocr Soc ; 1(1): 57-71, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29264446

RESUMO

CONTEXT: Elevated human choriogonadotropin (hCG) may stimulate aberrantly expressed luteinizing hormone (LH)/hCG receptor (LHCGR) in adrenal glands, resulting in pregnancy-induced bilateral macronodular adrenal hyperplasia and transient Cushing syndrome (CS). OBJECTIVE: To determine the role of LHCGR in transient, pregnancy-induced CS. DESIGN SETTING PATIENT AND INTERVENTION: We investigated the functional implications of LHCGRs in a patient presenting, at a tertiary referral center, with repeated pregnancy-induced CS with bilateral adrenal hyperplasia, resolving after parturition. MAIN OUTCOME MEASURES AND RESULTS: Acute testing for aberrant hormone receptors was negative except for arginine vasopressin (AVP)-increased cortisol secretion. Long-term hCG stimulation induced hypercortisolism, which was unsuppressed by dexamethasone. Postadrenalectomy histopathology demonstrated steroidogenically active adrenocortical hyperplasia and ectopic cortical cell clusters in the medulla. Quantitative polymerase chain reaction showed upregulated expression of LHCGR, transcription factors GATA4, ZFPM2, and proopiomelanocortin (POMC), AVP receptors (AVPRs) AVPR1A and AVPR2, and downregulated melanocortin 2 receptor (MC2R) vs control adrenals. LHCGR was localized in subcapsular, zona glomerulosa, and hyperplastic cells. Single adrenocorticotropic hormone-positive medullary cells were demonstrated in the zona reticularis. The role of adrenal adrenocorticotropic hormone was considered negligible due to downregulated MC2R. Coexpression of CYP11B1/CYP11B2 and AVPR1A/AVPR2 was observed in ectopic cortical cells in the medulla. hCG stimulation of the patient's adrenal cell cultures significantly increased cyclic adenosine monophosphate, corticosterone, 11-deoxycortisol, cortisol, and androstenedione production. CTNNB1, PRKAR1A, ARMC5, and PRKACA gene mutational analyses were negative. CONCLUSION: Nongenetic, transient, somatic mutation-independent, pregnancy-induced CS was due to hCG-stimulated transformation of LHCGR-positive undifferentiated subcapsular cells (presumably adrenocortical progenitors) into LHCGR-positive hyperplastic cortical cells. These cells respond to hCG stimulation with cortisol secretion. Without the ligand, they persist with aberrant LHCGR expression and the ability to respond to the same stimulus.

12.
Cell Physiol Biochem ; 43(3): 1064-1076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28977799

RESUMO

BACKGROUND/AIMS: Physiological role of luteinizing hormone (LH) and its receptor (LHCGR) in adrenal remains unknown. In inhibin-α/Simian Virus 40 T antigen (SV40Tag) (inhα/Tag) mice, gonadectomy-induced (OVX) elevated LH triggers the growth of transcription factor GATA4 (GATA4)-positive adrenocortical tumors in a hyperplasia-adenoma-adenocarcinoma sequence. METHODS: We investigated the role of LHCGR in tumor induction, by crossbreeding inhα/Tag with Lhcgr knockout (LuRKO) mice. By knocking out Lhcgr and Gata4 in Cα1 adrenocortical cells (Lhcgr-ko, Gata4-ko) we tested their role in tumor progression. RESULTS: Adrenal tumors of OVX inhα/Tag mice develop from the hyperplastic cells localized in the topmost layer of zona fasciculata. OVX inhα/Tag/LuRKO only developed SV40Tag positive hyperplastic cells that were GATA4 negative, cleaved caspase-3 positive and did not progress into adenoma. In contrast to Lhcgr-ko, Gata4-ko Cα1 cells presented decreased proliferation, increased apoptosis, decreased expression of Inha, SV40Tag and Lhcgr tumor markers, as well as up-regulated adrenal- and down-regulated sex steroid gene expression. Both Gata4-ko and Lhcgr-ko Cα1 cells had decreased expression of steroidogenic genes resulting in decreased basal progesterone production. CONCLUSION: Our data indicate that LH/LHCGR signaling is critical for the adrenal cell reprogramming by GATA4 induction prompting adenoma formation and gonadal-like phenotype of the adrenocortical tumors in inhα/Tag mice.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Fator de Transcrição GATA4/metabolismo , Hormônio Luteinizante/metabolismo , Neoplasias do Córtex Suprarrenal/etiologia , Neoplasias do Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Apoptose , Sistemas CRISPR-Cas/genética , Caspase 3/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Regulação para Baixo , Feminino , Fluorimunoensaio , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/metabolismo , Gônadas/cirurgia , Inibinas/genética , Inibinas/metabolismo , Hormônio Luteinizante/sangue , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Fosfoproteínas/metabolismo , Receptores do LH/deficiência , Receptores do LH/genética , Fator Esteroidogênico 1/metabolismo
13.
Cell Physiol Biochem ; 43(2): 670-684, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28942439

RESUMO

BACKGROUND/AIMS: The effect of impaired intracellular proline availability for proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied. METHODS: We generated a constitutively knocked-down PRODH/POX MCF-7 breast cancer cell line (MCF-7shPRODH/POX) as a model to analyze the functional consequences of impaired intracellular proline levels. We have used inhibitor of proline utilization in collagen biosynthesis, 2-metoxyestradiol (MOE), inhibitor of prolidase that generate proline, rapamycin (Rap) and glycyl-proline (GlyPro), substrate for prolidase. Collagen and DNA biosynthesis were evaluated by radiometric assays. Cell viability was determined using Nucleo-Counter NC-3000. The activity of prolidase was determined by colorimetric assay. Expression of proteins was assessed by Western blot and immunofluorescence bioimaging. Concentration of proline was analyzed by liquid chromatography with mass spectrometry. RESULTS: PRODH/POX knockdown decreased DNA and collagen biosynthesis, whereas increased prolidase activity and intracellular proline level in MCF-7shPRODH/POX cells. All studied compounds decreased cell viability in MCF-7 and MCF-7shPRODH/POX cells. DNA biosynthesis was similarly inhibited by Rap and MOE in both cell lines, but GlyPro inhibited the process only in MCF-7shPRODH/POX and MOE+GlyPro only in MCF-7 cells. All the compounds inhibited collagen biosynthesis, increased prolidase activity and cytoplasmic proline level in MCF-7shPRODH/POX cells and contributed to the induction of pro-survival mode only in MCF-7shPRODH/POX cells. In contrast, all studied compounds upregulated expression of pro-apoptotic protein only in MCF-7 cells. CONCLUSION: PRODH/POX was confirmed as a driver of apoptosis and proved the eligibility of MCF-7shPRODH/POX cell line as a highly effective model to elucidate the different mechanisms underlying proline utilization or generation in PRODH/POX-dependent pro-apoptotic pathways.


Assuntos
Apoptose , Prolina Oxidase/metabolismo , Prolina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Colágeno/metabolismo , Feminino , Humanos , Células MCF-7 , Prolina Oxidase/genética , Interferência de RNA , RNA Interferente Pequeno/genética
14.
Mol Cell Endocrinol ; 444: 9-18, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131743

RESUMO

Specific inbred strains and transgenic inhibin-α Simian Virus 40 T antigen (inhα/Tag) mice are genetically susceptible to gonadectomy-induced adrenocortical neoplasias. We identified altered gene expression in prepubertally gonadectomized (GDX) inhα/Tag and wild-type (WT) mice. Besides earlier reported Gata4 and Lhcgr, we found up-regulated Esr1, Prlr-rs1, and down-regulated Grb10, Mmp24, Sgcd, Rerg, Gnas, Nfatc2, Gnrhr, Igf2 in inhα/Tag adrenal tumors. Sex-steroidogenic enzyme genes expression (Srd5a1, Cyp19a1) was up-regulated in tumors, but adrenal-specific steroidogenic enzyme (Cyp21a1, Cyp11b1, Cyp11b2) down-regulated. We localized novel Lhcgr transcripts in adrenal cortex parenchyma and in non-steroidogenic A cells, in GDX WT and in intact WT mice. We identified up-regulated Esr1 as a potential novel biomarker of gonadectomy-induced adrenocortical tumors in inhα/Tag mice presenting with an inverted adrenal-to-gonadal steroidogenic gene expression profile. A putative normal adrenal remodeling or tumor suppressor role of the down-regulated genes (e.g. Grb10, Rerg, Gnas, and Nfatc2) in the tumors remains to be addressed.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Genes Neoplásicos , Gonadotropinas/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição GATA/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Esteroides/biossíntese
15.
J Clin Endocrinol Metab ; 101(7): 2905-14, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27224263

RESUMO

CONTEXT: FSH receptor (FSHR), besides being expressed in gonads, is also expressed in some extragonadal tissues at low levels. OBJECTIVE: We examined the functional expression of FSHR in different types of endometriotic lesions. DESIGN: Extensive studies were carried out to detect functional FSHR expression and FSH-stimulated estrogen production in ovarian endometriomas and recto-vaginal endometriotic nodules (RVEN). Normal endometrium, ovary, and myometrium tissues from nonpregnant cycling women served as controls. SETTINGS: This laboratory-based study was carried out on tissue specimens from patients with endometriosis and healthy donors. RESULTS: Endometriotic lesions and normal secretory-phase endometrium showed FSHR expression at both mRNA and protein level. RVEN and ovarian endometrioma demonstrated up-regulated CYP19A1, dependent on the activation of CYP19A1 proximal promoter II. Estrogen receptor-ß (ESR2) expression was significantly increased in RVEN vs normal endometrium. Recombinant human FSH stimulation of RVEN explants significantly increased estradiol production and CYP19A1 and ESR2 expression. FSHR was up-regulated in recombinant human FSH-stimulated endometrial and decidualized stromal cells with increased CYP19A1 expression. CONCLUSIONS: We described a novel functional FSHR expression, where FSH-stimulated CYP19A1 expression and estrogen production in RVEN are demonstrated. This locally FSH-induced estrogen production may contribute to the pathology, development, progression, and severity of RVEN.


Assuntos
Aromatase/genética , Endometriose/genética , Endométrio/metabolismo , Receptores do FSH/genética , Doenças Retais/genética , Doenças Vaginais/genética , Adulto , Aromatase/metabolismo , Estudos de Casos e Controles , Endometriose/patologia , Endométrio/efeitos dos fármacos , Endométrio/patologia , Estradiol/metabolismo , Receptor beta de Estrogênio/fisiologia , Feminino , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doenças Ovarianas/genética , Doenças Ovarianas/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores do FSH/metabolismo , Doenças Retais/patologia , Doenças Vaginais/patologia , Adulto Jovem
16.
Reprod Biol ; 14(1): 25-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24607252

RESUMO

Granulosa cell tumors are rare, 3-7.6% of primary ovarian tumors, although with poor prognosis as the tumor-related mortality rate is 37.3%, with 80% of deaths occurring on recurrence. We have created a transgenic (TG) murine model for gonadal somatic cell tumors by expressing the powerful viral oncogene, Simian Virus 40 T-antigen (Tag), under the regulation of murine inhibin α-subunit 6 kb promoter (inhα/Tag). Gonadotropin dependent ovarian granulosa cell tumors were formed in females by the age of 5-6 months, with a 100% penetrance. We have successfully used the inhα/Tag model to test different treatment strategies for ovarian tumors. With a gene therapy trial in inhα/Tag mice crossbred with inhα/HSV-TK (herpes simplex virus thymidine kinase) mice (double TG), we proved the principle that targeted expression of HSV-TK gene in gonadal somatic cell tumors enabled tumor ablation by anti-herpes treatment. When we aimed at targeted destruction of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) expressing inhα/Tag tumor cells in vivo by a lytic peptide Hecate-CGß conjugate, we could successfully kill the tumor cells, sparing the normal cells. We recently found high zona pellucida glycoprotein 3 (ZP3) expression in inhα/Tag granulosa cell tumors, as well as in human granulosa cell tumors. We tested the concept of treating the ovarian tumors of inhα/Tag mice by vaccination against the ectopically expressed ZP3. Immunotherapy with recombinant human (rh) ZP3 was highly successful with no objective side effects in inhα/Tag females, suggesting rhZP3 immunization as a novel strategy for the immunotherapy of ovarian granulosa cell tumors.


Assuntos
Tumor de Células da Granulosa/terapia , Inibinas/genética , Neoplasias Ovarianas/terapia , Regiões Promotoras Genéticas , Animais , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Modelos Animais de Doenças , Feminino , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Vírus 40 dos Símios/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA