Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 150(2): 260e-271e, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653545

RESUMO

BACKGROUND: Pseudomonas aeruginosa accounts for 7 to 22 percent of breast implant-associated infections, which can result in reconstructive failures and explantation. Investigating host-pathogen-device interactions in mice and patient samples will improve the understanding of colonization mechanisms, for targeted treatments and clinical guidelines. METHODS: Mice with and without implants were infected with PAO1 laboratory strain or BIP2 or BIP16 clinical strains and killed at 1 day or 7 days after infection to evaluate for colonization of implants and underlying tissues by means of colony-forming unit enumeration. Immunostaining was performed on mouse implants, human tissue expanders colonized by BIP2, and acellular dermal matrix colonized by BIP16. RESULTS: Colonization of tissues and smooth implants by P. aeruginosa was strain-dependent: at 1 day after infection, all strains acutely infected tissues with and without implants with colonization levels reflecting growth rates of individual strains. At 7 days after infection, PAO1 caused colonization of approximately 10 5 colony-forming units/100 mg of tissue but required implant presence, whereas in mice infected with BIP2/BIP16, colony-forming units were below the limit of detection with or without implants. Immunofluorescence staining of mouse implants, however, demonstrated continued presence of BIP2 and BIP16. Staining showed co-localization of all strains with fibrinogen, collagen I, and collagen III on mouse and human samples. CONCLUSIONS: The trajectory of P. aeruginosa in breast implant-associated infections was strain-dependent, and strains could exhibit acute symptomatic or chronic asymptomatic colonization. With strains causing clinical symptoms, the presence of an implant significantly worsened infection. For asymptomatic colonizers, further studies investigating their long-term impacts, especially during periods of immunosuppression in hosts, are needed.


Assuntos
Implante Mamário , Implantes de Mama , Mastite , Infecções por Pseudomonas , Animais , Implantes de Mama/efeitos adversos , Colágeno , Feminino , Humanos , Camundongos , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa
2.
Elife ; 82019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429405

RESUMO

A mucosal infectious disease episode can render the host either more or less susceptible to recurrent infection, but the specific mechanisms that tip the balance remain unclear. We investigated this question in a mouse model of recurrent urinary tract infection and found that a prior bladder infection resulted in an earlier onset of tumor necrosis factor-alpha (TNFɑ)-mediated bladder inflammation upon subsequent bacterial challenge, relative to age-matched naive mice. However, the duration of TNFɑ signaling activation differed according to whether the first infection was chronic (Sensitized) or self-limiting (Resolved). TNFɑ depletion studies revealed that transient early-phase TNFɑ signaling in Resolved mice promoted clearance of bladder-colonizing bacteria via rapid recruitment of neutrophils and subsequent exfoliation of infected bladder cells. In contrast, sustained TNFɑ signaling in Sensitized mice prolonged damaging inflammation, worsening infection. This work reveals how TNFɑ signaling dynamics can be rewired by a prior infection to shape diverse susceptibilities to future mucosal infections.


Assuntos
Imunidade nas Mucosas , Fatores Imunológicos/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Infecções Urinárias/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Recidiva , Prevenção Secundária
3.
PLoS Pathog ; 14(12): e1007457, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30543708

RESUMO

Urinary tract infections (UTI) are extremely common and can be highly recurrent, with 1-2% of women suffering from six or more recurrent episodes per year. The high incidence of recurrent UTI, including recurrent infections caused by the same bacterial strain that caused the first infection, suggests that at least some women do not mount a protective adaptive immune response to UTI. Here we observed in a mouse model of cystitis (bladder infection) that infection with two different clinical uropathogenic Escherichia coli (UPEC) isolates, UTI89 or CFT073, resulted in different kinetics of bacterial clearance and different susceptibility to same-strain recurrent infection. UTI89 and CFT073 both caused infections that persisted for at least two weeks in similar proportions of mice, but whereas UTI89 infections could persist indefinitely, CFT073 infections began to clear two weeks after inoculation and were uniformly cleared within eight weeks. Mice with a history of CFT073 cystitis lasting four weeks were protected against recurrent CFT073 infection after antibiotic therapy, but were not protected against challenge with UTI89. In contrast, mice with a history of UTI89 cystitis lasting four weeks were highly susceptible to challenge infection with either strain after antibiotic treatment. We found that depletion of CD4+ and CD8+ T cell subsets impaired the ability of the host to clear CFT073 infections and rendered mice with a history of CFT073 cystitis lasting four weeks susceptible to recurrent CFT073 cystitis upon challenge. Our findings demonstrate the complex interplay between the broad genetic diversity of UPEC and the host innate and adaptive immune responses during UTI. A better understanding of these host-pathogen interactions is urgently needed for effective drug and vaccine development in the era of increasing antibiotic resistance.


Assuntos
Cistite/imunologia , Suscetibilidade a Doenças/imunologia , Infecções por Escherichia coli/imunologia , Interações Hospedeiro-Patógeno/imunologia , Escherichia coli Uropatogênica/imunologia , Animais , Camundongos , Escherichia coli Uropatogênica/genética
4.
Exp Neurol ; 209(1): 161-70, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17967455

RESUMO

Autonomic neuropathy is a significant diabetic complication resulting in increased morbidity and mortality. Studies of autopsied diabetic patients and several rodent models demonstrate that the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in prevertebral ganglia is the occurrence of synaptic pathology resulting in distinctive dystrophic neurites ("neuritic dystrophy"). Our prior studies show that neuritic dystrophy is reversed by exogenous IGF-I administration without altering the metabolic severity of diabetes, i.e. functioning as a neurotrophic substance. The description of erythropoietin (EPO) synergy with IGF-I function and the recent discovery of EPO's multifaceted neuroprotective role suggested it might substitute for IGF-I in treatment of diabetic autonomic neuropathy. Our current studies demonstrate EPO receptor (EPO-R) mRNA in a cDNA set prepared from NGF-maintained rat sympathetic neuron cultures which decreased with NGF deprivation, a result which demonstrates clearly that sympathetic neurons express EPO-R, a result confirmed by immunohistochemistry. Treatment of STZ-diabetic NOD-SCID mice have demonstrated a dramatic preventative effect of EPO and carbamylated EPO (CEPO, which is neuroprotective but not hematopoietic) on the development of neuritic dystrophy. Neither EPO nor CEPO had a demonstrable effect on the metabolic severity of diabetes. Our results coupled with reported salutary effects of EPO on postural hypotension in a few clinical studies of EPO-treated anemic diabetic and non-diabetic patients may reflect a primary neurotrophic effect of EPO on the sympathetic autonomic nervous system, rather than a primary hematopoietic effect. These findings may represent a major clinical advance since EPO has been widely and safely used in anemic patients due to a variety of clinical conditions.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/prevenção & controle , Eritropoetina/análogos & derivados , Eritropoetina/farmacologia , Animais , Carbamatos/farmacologia , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/patologia , Gânglios Simpáticos/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuritos/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores da Eritropoetina/efeitos dos fármacos , Proteínas Recombinantes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA