Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 188(7): 3342-50, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22393157

RESUMO

Reactive oxygen species and reactive nitrogen species play important roles during immune responses to bacterial pathogens. Extracellular superoxide dismutase (ecSOD) regulates extracellular concentrations of reactive oxygen species and reactive nitrogen species and contributes to tissue protection during inflammatory insults. The participation of ecSOD in immune responses seems therefore intuitive, yet is poorly understood. In the current study, we used mice with varying levels of ecSOD activity to investigate the involvement of this enzyme in immune responses against Listeria monocytogenes. Surprisingly, our data demonstrate that despite enhanced neutrophil recruitment to the liver, ecSOD activity negatively affected host survival and bacterial clearance. Increased ecSOD activity was accompanied by decreased colocalization of neutrophils with bacteria, as well as increased neutrophil apoptosis, which reduced overall and neutrophil-specific TNF-α production. Liver leukocytes from mice lacking ecSOD produced equivalent NO· compared with liver leukocytes from mice expressing ecSOD. However, during infection, there were higher levels of peroxynitrite (NO(3)·(-)) in livers from mice lacking ecSOD compared with livers from mice expressing ecSOD. Neutrophil depletion studies revealed that high levels of ecSOD activity resulted in neutrophils with limited protective capacity, whereas neutrophils from mice lacking ecSOD provided superior protection compared with neutrophils from wild-type mice. Taken together, our data demonstrate that ecSOD activity reduces innate immune responses during bacterial infection and provides a potential target for therapeutic intervention.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Neutrófilos/imunologia , Espécies Reativas de Nitrogênio/metabolismo , Superóxido Dismutase/imunologia , Animais , Apoptose , Quimiotaxia de Leucócito , Suscetibilidade a Doenças , Indução Enzimática , Feminino , Listeria monocytogenes/isolamento & purificação , Listeriose/complicações , Fígado/química , Fígado/enzimologia , Fígado/microbiologia , Subpopulações de Linfócitos/imunologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutropenia/complicações , Neutropenia/imunologia , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/química , Baço/enzimologia , Baço/microbiologia , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Free Radic Biol Med ; 50(10): 1288-96, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21362472

RESUMO

Previous work by others suggests that there is a strain-dependent variation in the susceptibility to inflammatory lung injury in mice. Specifically, the 129/J mice appear to be more resistant to asbestos-induced pulmonary fibrosis than the C57BL/6 strain. A separate line of evidence suggests that extracellular superoxide dismutase (ecSOD) may play an important role in protecting the lung from such injuries. We have recently reported that the 129/J strain of mice has an ecSOD genotype and phenotype distinctly different from those of the C57BL/6 mice. In order to identify ecSOD as a potential "asbestos-injury resistance" gene, we bred congenic mice, on the C57BL/6 background, carrying the wild type (sod3wt) or the 129/J (sod3129) allele for ecSOD. This allowed us to examine the role of ecSOD polymorphism in susceptibility to lung injury in an otherwise identical genetic background. Interestingly, asbestos treatment induces a significant (~40%) increase in plasma ecSOD activity in the sod3129 mice, but not in the sod3wt mice. Asbestos administration results in a loss of ecSOD activity and protein from lung tissue of both congenic strains, but the lung ecSOD activity remains significantly higher in sod3129 mice. As expected, asbestos treatment results in a significant recovery of ecSOD protein in bronchoalveolar lavage fluid (BALF). The BALF of sod3129 mice also have significantly lower levels of proteins and inflammatory cells, especially neutrophils, accompanied by a significantly lower extent of lung injury, as measured by a pathology index score or hydroxyproline content. Immunohistochemistry reveals a significant loss of ecSOD from the tips of the respiratory epithelial cells in response to asbestos treatment and that the loss of immunodetectable ecSOD is compensated for by enzyme expression by infiltrating cells, especially in the sod3wt mice. Our studies thus identify ecSOD as an important anti-inflammatory gene, responsible for most, if not all of the resistance to asbestos-induced lung injury reported for the 129/J strain of mice. The data further suggest allele-specific differences in the regulation of ecSOD expression. These congenic mice therefore represent a very useful model to study the role of this enzyme in all inflammatory diseases. Polymorphisms in human ecSOD have also been reported and it appears logical to assume that such variations may have a profound effect on disease susceptibility.


Assuntos
Espaço Extracelular/enzimologia , Fibrose Pulmonar/metabolismo , Superóxido Dismutase/genética , Alelos , Animais , Amianto , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo
3.
Atherosclerosis ; 193(1): 28-35, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16973170

RESUMO

We previously demonstrated that hyperbaric oxygen (HBO) treatment inhibits diet-induced atherosclerosis in New Zealand White rabbits. In the present study we investigate the mechanisms that might be involved in the athero-protective effect of HBO treatment in a well-accepted model of atherosclerosis, the apoE knockout (KO) mouse. We examine the effects of daily HBO treatment (for 5 and 10 weeks) on the components of the anti-oxidant defense mechanism and the redox state in blood, liver and aortic tissues and compare them to those of untreated apoE KO mice. HBO treatment results in a significant reduction of aortic cholesterol content and decreased fatty streak formation. These changes are accompanied by a significant reduction of autoantibodies against oxidatively modified LDL and profound changes in the redox state of the liver and aortic tissues. A 10-week treatment significantly reduces hepatic levels of TBARS and oxidized glutathione, while significantly increases the levels of reduced glutathione, glutathione reductase (GR), transferase, Se-dependent glutathione peroxidase and catalase (CAT). The effects of HBO treatment are similar in the aortic tissues. These observations provide evidence that HBO treatment has a powerful effect on the redox state of relevant tissues and produces an environment that inhibits oxidation. The anti-oxidant response may be the key to the anti-atherogenic effect of HBO treatment.


Assuntos
Antioxidantes/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Oxigenoterapia Hiperbárica , Animais , Aorta Torácica/patologia , Apolipoproteínas E/genética , Arildialquilfosfatase/sangue , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Autoanticorpos/sangue , Colesterol/sangue , Feminino , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Peroxidação de Lipídeos , Lipoproteínas LDL/imunologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Coelhos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
J Lipid Res ; 44(9): 1622-32, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12777465

RESUMO

Macrophage apoptosis is an important factor in determining the efficiency of the immune response, atherosclerotic lesion stability, and clearance of aged cells by phagocytosis. The involvement of caveolin-1 in the regulation of apoptosis has been previously suggested in fibroblasts and epithelial cells. Here we show that treatment of thioglycollate-elicited mouse peritoneal macrophages with various unrelated apoptotic agents, including simvastatin, camptothecin, or glucose deprivation, is associated with a specific and large increase in caveolin-1 expression. In contrast, caveolin-2 levels remain unaffected. Induction of apoptosis was measured by changes in cell morphology, annexin V-labeling, and DNA fragmentation. We demonstrate that caveolin-1 in macrophages is present in lipid rafts and colocalizes with phosphatidylserine (PS) at the cell surface of apoptotic macrophages. Our data suggest that caveolin-1 increase is an early event, closely accompanied by PS externalization and independent of caspase activation and nuclear DNA fragmentation. The increase in caveolin-1 levels does not require new protein synthesis, as cycloheximide does not prevent the apoptosis-mediated increase in caveolin-1 levels. We propose that increased levels of caveolin-1 characterize the apoptotic phenotype of macrophages. Caveolin-1 may be involved in the efficient externalization of PS at the surface of the apoptotic cells.


Assuntos
Apoptose/fisiologia , Caveolinas/metabolismo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Caveolina 1 , Caveolina 2 , Caveolinas/genética , Células Cultivadas , Ativação Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Microdomínios da Membrana/metabolismo , Camundongos , Biossíntese de Proteínas , Sinvastatina/farmacologia , Regulação para Cima
5.
J Lipid Res ; 44(1): 11-21, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12518018

RESUMO

The identification of caveolin-1 more than a decade ago initiated active research into its role in the formation of caveolae, membrane trafficking, signal transduction pathways, and lipid homeostasis. Although caveolins are ubiquitously expressed, the majority of the available information comes from differentiated cells rich in caveolins, such as fibroblasts, adipocytes, and endothelial cells. During the development of atherosclerosis, macrophages play a pivotal role in the formation of the fatty streak lesions. They take up large amounts of lipids and accumulate in the subendothelial space, forming foam cells that fill up the lesion area. Since caveolins have been implicated in the regulation of cellular cholesterol metabolism in several cell types, it is of interest to examine their potential function in macrophages. In this review, we attempt to summarize current knowledge and views on the role of caveolins in cholesterol metabolism with emphasis on macrophages.


Assuntos
Cavéolas/metabolismo , Caveolinas/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Animais , Caveolinas/genética , Colesterol/metabolismo , Regulação da Expressão Gênica , Humanos , Macrófagos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA