Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16990, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043734

RESUMO

Protein kinase C is a family of kinases that play important roles in carcinogenesis. Medicinal plants from Plectranthus spp. (Lamiaceae) are a well-known source of interesting abietanes, such as 7α-acetoxy-6ß-hydroxyroyleanone (Roy). This study aimed to extract and isolate Roy from P. grandidentatus Gürke, comparing two extraction methods (CO2 supercritical and ultrasound-assisted acetonic extraction), and design new royleanone derivatives for PKC modulation focusing on breast cancer therapy. The concentration of Roy in the extracts was determined by HPLC-DAD. The supercritical extraction method yielded 3.6% w/w, with the presence of 42.7 µg mg-1 of Roy (yield of 0.13%), while ultrasound-assisted acetonic extraction yielded 2.3% w/w, with the presence of 55.2 µg mg-1 of Roy (yield of 0.15%). The reactivity of Roy was investigated aiming at synthetizing new ester derivatives through standard benzoylation and esterification reactions. The benzoylated (Roy-12-Bz) and acetylated (Roy-12-Ac) derivatives in the C12 position were consistently prepared with overall good yields (33-86%). These results indicate the 12-OH position as the most reactive for esterification, affording derivatives under mild conditions. The reported di-benzoylated (RoyBz) and di-acetylated (RoyAc) derivatives were also synthesized after increasing the temperature (50 °C), reaction time, and using an excess of reagents. The cytotoxic potential of Roy and its derivatives was assessed against breast cancer cell lines, with RoyBz emerging as the most promising compound. Derivatization at position C-12 did not offer advantages over di-esterification at positions C-12 and C-6 or over the parent compound Roy and the presence of aromatic groups favored cytotoxicity. Evaluation of royleanones as PKC-α, ßI, δ, ε, and ζ activators revealed DeRoy's efficacy across all isoforms, while RoyPr showed promising activation of PKC-δ but not PKC-ζ, highlighting the influence of slight structural changes on isoform selectivity. Molecular docking analysis emphasized the importance of microenvironmental factors in isoform specificity, underscoring the complexity of PKC modulation and the need for further exploration.


Assuntos
Proteína Quinase C , Humanos , Proteína Quinase C/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Isoenzimas/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Diterpenos
2.
Eur J Med Chem ; 241: 114637, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35961068

RESUMO

MDM2 and MDM4 are key negative regulators of p53, an important protein involved in several cell processes (e.g. cell cycle and apoptosis). Not surprisingly, the p53 tumor suppressor function is inactivated in tumors overexpressing these two proteins. Therefore, both MDM2 and MDM4 are considered important therapeutic targets for an effective reactivation of the p53 function. Herein, we present our studies on the development of spiropyrazoline oxindole small molecules able to inhibit MDM2/4-p53 protein-protein interactions (PPIs). Twenty-seven potential spiropyrazoline oxindole dual inhibitors were prepared based on in silico structural optimization studies of a hit compound with MDM2 and MDM4 proteins. The antiproliferative activity of the target compounds was evaluated in cancer cell lines harboring wild-type p53 and overexpressing MDM2 and/or MDM4. The most active compounds in SJSA-1 cells, 2q and 3b, induce cell death via apoptosis and control cell growth by targeting the G0/G1 cell cycle checkpoint in a concentration-dependent manner. The ability of the five most active spiropyrazoline oxindoles in dissociating p53 from MDM2 and MDM4 was analyzed by an immunoenzymatic assay. Three compounds inhibited MDM2/4-p53 PPIs with IC50 values in the nM range, while one compound inhibited more selectively the MDM2-p53 PPI over the MDM4-p53 PPI. Collectively, these results show: i) 3b may serve as a valuable lead for obtaining selective MDM2-p53 PPI inhibitors and more efficient anti-osteosarcoma agents; ii) 2a, 2q and 3f may serve as valuable leads for obtaining dual MDM2/4 inhibitors and more effective p53 activators.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 1008418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589826

RESUMO

Introduction: Diabetes is one of the major metabolic diseases worldwide. Despite being a complex systemic pathology, the aggregation and deposition of Islet Amyloid Polypeptide (IAPP), or amylin, is a recognized histopathological marker of the disease. Although IAPP proteotoxicity represents an important trigger of ß-cell dysfunction and ultimately death, its exploitation as a therapeutic tool remains underdeveloped. The bioactivity of (poly)phenols towards inhibition of pathological protein aggregation is well known, however, most of the identified molecules have limited bioavailability. Methods: Using a strategy combining in silico, cell-free and cell studies, we scrutinized a unique in-house collection of (poly)phenol metabolites predicted to appear in the human circulation after (poly)phenols ingestion. Results: We identified urolithin B as a potent inhibitor of IAPP aggregation and a powerful modulator of cell homeostasis pathways. Urolithin B was shown to affect IAPP aggregation pattern, delaying the formation of amyloid fibrils and altering their size and morphology. The molecular mechanisms underlying urolithin B-mediated protection include protein clearance pathways, mitochondrial function, and cell cycle ultimately rescuing IAPP-mediated cell dysfunction and death. Discussion: In brief, our study uncovered urolithin B as a novel small molecule targeting IAPP pathological aggregation with potential to be exploited as a therapeutic tool for mitigating cellular dysfunction in diabetes. Resulting from the colonic metabolism of dietary ellagic acid in the human body, urolithin B bioactivity has the potential to be explored in nutritional, nutraceutical, and pharmacological perspectives.


Assuntos
Diabetes Mellitus , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Cumarínicos/farmacologia , Fenóis
4.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34577562

RESUMO

Dregamine (1), a major monoterpene indole alkaloid isolated from Tabernaemontana elegans, was submitted to chemical transformation of the ketone function, yielding 19 azines (3-21) and 11 semicarbazones (22-32) bearing aliphatic or aromatic substituents. Their structures were assigned mainly by 1D and 2D NMR (COSY, HMQC, and HMBC) experiments. Compounds 3-32 were evaluated as multidrug resistance (MDR) reversers through functional and chemosensitivity assays in a human ABCB1-transfected mouse T-lymphoma cell model, overexpressing P-glycoprotein. A significant increase of P-gp inhibitory activity was observed for most derivatives, mainly those containing azine moieties with aromatic substituents. Compounds with trimethoxyphenyl (17) or naphthyl motifs (18, 19) were among the most active, exhibiting strong inhibition at 0.2 µM. Moreover, most of the derivatives showed selective antiproliferative effects toward resistant cells, having a collateral sensitivity effect. In drug combination assays, all compounds showed to interact synergistically with doxorubicin. Selected compounds (12, 17, 18, 20, and 29) were evaluated in the ATPase activity assay, in which all compounds but 12 behaved as inhibitors. To gather further insights on drug-receptor interactions, in silico studies were also addressed. A QSAR model allowed us to deduce that compounds bearing bulky and lipophilic substituents were stronger P-gp inhibitors.

5.
Eur J Med Chem ; 210: 112985, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189435

RESUMO

Aiming at generating a series of monoterpene indole alkaloids with enhanced multidrug resistance (MDR) reversing activity in cancer, two major epimeric alkaloids isolated from Tabernaemontana elegans, tabernaemontanine (1) and dregamine (2), were derivatized by alkylation of the indole nitrogen. Twenty-six new derivatives (3-28) were prepared by reaction with different aliphatic and aromatic halides, whose structures were elucidated mainly by NMR, including 2D NMR experiments. Their MDR reversal ability was evaluated through a functional assay, using as models resistant human colon adenocarcinoma and human ABCB1-gene transfected L5178Y mouse lymphoma cells, overexpressing P-glycoprotein (P-gp), by flow cytometry. A considerable increase of activity was found for most of the derivatives, being the strongest P-gp inhibitors those sharing N-phenethyl moieties, displaying outstanding inhibitory activity, associated with weak cytotoxicity. Chemosensitivity assays were also performed in a model of combination chemotherapy in the same cell lines, by studying the in vitro interactions between the compounds and the antineoplastic drug doxorubicin. Most of the compounds have shown strong synergistic interactions with doxorubicin, highlighting their potential as MDR reversers. QSAR models were also explored for insights on drug-receptor interaction, and it was found that lipophilicity and bulkiness features were associated with inhibitory activity, although linear correlations were not observed.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Alcaloides Indólicos/farmacologia , Alquilação , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Camundongos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Células Tumorais Cultivadas
6.
Bioorg Med Chem ; 28(23): 115798, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038666

RESUMO

Naringenin (1), isolated from Euphorbia pedroi, was previously derivatized yielding compounds 2-13. In this study, aiming at expanding the pool of analogues of the flavanone core towards better multidrug resistance (MDR) reversal agents, alkylation reactions and chemical modification of the carbonyl moiety was performed (15-39). Compounds structures were assigned mainly by 1D and 2D NMR experiments. Compounds 1-39 were assessed as MDR reversers, in human ABCB1-transfected mouse T-lymphoma cells, overexpressing P-glycoprotein (P-gp). The results revealed that O-methylation at C-7, together with the introduction of nitrogen atoms and aromatic moieties at C-4 or C-4', significantly improved the activity, being compounds 27 and 37 the strongest P-gp modulators and much more active than verapamil. In combination assays, synergistic interactions of selected compounds with doxorubicin substantiated the results. While molecular docking suggested that flavanone derivatives act as competitive modulators, molecular dynamics showed that dimethylation promotes binding to a modulator-binding site. Moreover, flavanones may also interact with a vicinal ATP-binding site in both nucleotide-binding domains, hypothesizing an allosteric mode of action.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavanonas/química , Nitrogênio/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Euphorbia/química , Euphorbia/metabolismo , Flavanonas/isolamento & purificação , Flavanonas/farmacologia , Humanos , Linfoma de Células T/patologia , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
7.
Sci Rep ; 10(1): 9823, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555203

RESUMO

P-glycoprotein (P-gp, ABCB1) overexpression is, currently, one of the most important multidrug resistance (MDR) mechanisms in tumor cells. Thus, modulating drug efflux by P-gp has become one of the most promising approaches to overcome MDR in cancer. Yet, more insights on the molecular basis of drug specificity and efflux-related signal transmission mechanism between the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) are needed to develop molecules with higher selectivity and efficacy. Starting from a murine P-gp crystallographic structure at the inward-facing conformation (PDB ID: 4Q9H), we evaluated the structural quality of the herein generated human P-gp homology model. This initial human P-gp model, in the presence of the "linker" and inserted in a suitable lipid bilayer, was refined through molecular dynamics simulations and thoroughly validated. The best human P-gp model was further used to study the effect of four single-point mutations located at the TMDs, experimentally related with changes in substrate specificity and drug-stimulated ATPase activity. Remarkably, each P-gp mutation is able to induce transmembrane α-helices (TMHs) repacking, affecting the drug-binding pocket volume and the drug-binding sites properties (e.g. volume, shape and polarity) finally compromising drug binding at the substrate binding sites. Furthermore, intracellular coupling helices (ICH) also play an important role since changes in the TMHs rearrangement are shown to have an impact in residue interactions at the ICH-NBD interfaces, suggesting that identified TMHs repacking affect TMD-NBD contacts and interfere with signal transmission from the TMDs to the NBDs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Humanos , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Especificidade por Substrato
8.
ACS Med Chem Lett ; 11(5): 839-845, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435393

RESUMO

The development of multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. Several abietane diterpenes with antitumoral activities have been isolated from Plectranthus spp. such as 6,7-dehydroroyleanone (DHR, 1) and 7α-acetoxy-6ß-hydroxyroyleanone (AHR, 2). Several royleanone derivatives were prepared through hemisynthesis from natural compounds 1 and 2 to achieve a small library of products with enhanced anti-P-glycoprotein activity. Nonetheless, some derivatives tend to be unstable. Therefore, to reason such lack of stability, the electron density based local reactivity descriptors condensed Fukui functions and dual descriptor were calculated for several derivatives of DHR. Additionally, molecular docking and molecular dynamics studies were performed on several other derivatives to clarify the molecular mechanisms by which they may exert their inhibitory effect in P-gp activity. The analysis on local reactivity descriptors was important to understand possible degradation pathways and to guide further synthetic approaches toward new royleanone derivatives. A molecular docking study suggested that the presence of aromatic moieties increases the binding affinity of royleanone derivatives toward P-gp. It further suggests that one royleanone benzoylated derivative may act as a noncompetitive efflux modulator when bound to the M-site. The future generation of novel royleanone derivatives will involve (i) a selective modification of position C-12 with chemical moieties smaller than unsubstituted benzoyl rings and (ii) the modification of the substitution pattern of the benzoyloxy moiety at position C-6.

9.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456148

RESUMO

Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6ß-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones' bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes.


Assuntos
Abietanos/química , Antineoplásicos/química , Proteína Quinase C/metabolismo , Abietanos/farmacologia , Antineoplásicos/farmacologia , Sítios de Ligação , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Células MCF-7 , Simulação de Acoplamento Molecular , Ligação Proteica , Proteína Quinase C/química
10.
Eur J Med Chem ; 194: 112242, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32248004

RESUMO

N-Methyl-d-aspartate receptors (NMDARs) are crucial for the normal function of the central nervous system (CNS), and fundamental in memory and learning-related processes. The overactivation of these receptors is associated with numerous neurodegenerative and psychiatric disorders. Therefore, NMDAR is considered a relevant therapeutic target for many CNS disorders. Herein, we report the synthesis and pharmacological evaluation of a new scaffold with antagonistic activity for NMDAR. Specifically, a chemical library of eighteen 1-aminoindan-2-ol tetracyclic lactams was synthesized and screened as NMDAR antagonists. The compounds were obtained by chiral pool synthesis using enantiomerically pure 1-aminoindan-2-ols as chiral inductors, and their stereochemistry was proven by X-ray crystallographic analysis of two target compounds. Most compounds reveal NMDAR antagonism, and eleven compounds display IC50 values in a Ca2+ entry-sensitive fluo-4 assay in the same order of magnitude of memantine, a clinically approved NMDAR antagonist. Docking studies suggest that the novel compounds can act as NMDAR channel blockers since there is a compatible conformation with MK-801 co-crystallized with NMDAR channel. In addition, we show that the tetracyclic 1-aminoindan-2-ol derivatives are brain permeable and non-toxic, and we identify promising hits for further optimization as modulators of the NMDAR function.


Assuntos
Lactamas/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Barreira Hematoencefálica/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Lactamas/síntese química , Lactamas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Doenças do Sistema Nervoso/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
11.
ChemMedChem ; 14(14): 1325-1328, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31162877

RESUMO

Quadruplex nucleic acids are promising targets for cancer therapy. In this study we used a fragment-based approach to create new flexible G-quadruplex (G4) DNA-interactive small molecules with good calculated oral drug-like properties, based on quinoline and triazole heterocycles. G4 melting temperature and polymerase chain reaction (PCR)-stop assays showed that two of these compounds are selective G4 ligands, as they were able to induce and stabilize G4s in a dose- and DNA sequence-dependent manner. Molecular docking studies have suggested plausible quadruplex binding to both the G-quartet and groove, with the quinoline module playing the major role. Compounds were screened for cytotoxicity against four cancer cell lines, where 4,4'-(4,4'-(1,3-phenylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(1-methylquinolin-1-ium) (1 d) showed the greater activity. Importantly, dose-response curves show that 1 d is cytotoxic in the human colon cancer HT-29 cell line enriched in cancer stem-like cells, a subpopulation of cells implicated in chemoresistance. Overall, this study identified a new small molecule as a promising lead for the development of drugs targeting G4 in cancer stem cells.


Assuntos
Antineoplásicos/farmacologia , DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Quinolinas/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , DNA/genética , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Quinolinas/síntese química , Quinolinas/metabolismo , Triazóis/síntese química , Triazóis/metabolismo
12.
J Nat Prod ; 81(9): 2032-2040, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30199257

RESUMO

The phytochemical study of Euphorbia pedroi led to the isolation of a new tetracyclic triterpenoid with an unusual spiro scaffold, spiropedroxodiol (1), along with seven known terpenoids (2-8). Aiming at obtaining compounds with improved multidrug-resistance (MDR) reversal activity, compound 8, an ent-abietane diterpene, was derivatized by introducing nitrogen-containing and aromatic moieties, yielding compounds 9-14. The structures of compounds were characterized by detailed spectroscopic analysis, including 2D NMR experiments (COSY, HMQC/HSQC, HMBC, and NOESY). Compounds 1-14 were evaluated for their MDR-reversing activity on human ABCB1 gene transfected mouse lymphoma cells (L5178Y-MDR) through a combination of functional and chemosensitivity assays. The natural compounds 1-8 were further evaluated on resistant human colon adenocarcinoma cells (Colo320), and, additionally, their cytotoxicity was assessed on noncancerous mouse (NIH/3T3) and human (MRC-5) embryonic fibroblast cell lines. While spiropedroxodiol (1) was found to be a very strong MDR reversal agent in both L5178Y-MDR and Colo320 cells, the chemical modifications of helioscopinolide E (8) at C-3 positively contributed to increase the MDR reversal activity of compounds 10, 12, and 13. Furthermore, in combination assays, compounds 1 and 7-14 enhanced synergistically the cytotoxicity of doxorubicin. Finally, by means of molecular docking, the key residues and binding modes by which compounds 1-14 may interact with a murine P-glycoprotein model were identified, allowing additional insights on the efflux modulation mechanism of these compounds.


Assuntos
Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Euphorbia/química , Terpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Células Cultivadas , Doxorrubicina/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Simulação de Acoplamento Molecular , Terpenos/química
13.
Sci Rep ; 7(1): 15534, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138424

RESUMO

Efflux pumps of the ATP-binding cassette transporters superfamily (ABC transporters) are frequently involved in the multidrug-resistance (MDR) phenomenon in cancer cells. Herein, we describe a new atomistic model for the MDR-related ABCG2 efflux pump, also named breast cancer resistance protein (BCRP), based on the recently published crystallographic structure of the ABCG5/G8 heterodimer sterol transporter, a member of the ABCG family involved in cholesterol homeostasis. By means of molecular dynamics simulations and molecular docking, a far-reaching characterization of the ABCG2 homodimer was obtained. The role of important residues and motifs in the structural stability of the transporter was comprehensively studied and was found to be in good agreement with the available experimental data published in literature. Moreover, structural motifs potentially involved in signal transmission were identified, along with two symmetrical drug-binding sites that are herein described for the first time, in a rational attempt to better understand how drug binding and recognition occurs in ABCG2 homodimeric transporters.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
14.
ChemMedChem ; 11(19): 2194-2204, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27538856

RESUMO

The potential of azaaurones as dual-stage antimalarial agents was investigated by assessing the effect of a small library of azaaurones on the inhibition of liver and intraerythrocytic lifecycle stages of the malaria parasite. The whole series was screened against the blood stage of a chloroquine-resistant Plasmodium falciparum strain and the liver stage of P. berghei, yielding compounds with dual-stage activity and sub-micromolar potency against erythrocytic parasites. Studies with genetically modified parasites, using a phenotypic assay based on the P. falciparum Dd2-ScDHODH line, which expresses yeast dihydroorotate dehydrogenase (DHODH), showed that one of the azaaurone derivatives has the potential to inhibit the parasite mitochondrial electron-transport chain. The global urgency in finding new therapies for malaria, especially against the underexplored liver stage, associated with chemical tractability of azaaurones, warrants further development of this chemotype. Overall, these results emphasize the azaaurone chemotype as a promising scaffold for dual-stage antimalarials.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Complexos de Coordenação/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Relação Estrutura-Atividade
15.
Phys Chem Chem Phys ; 17(34): 22023-34, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235302

RESUMO

The membrane biophysical aspects by which multidrug resistance (MDR) relate to the ABC transporter function still remain largely unknown. Notwithstanding the central role that efflux pumps like P-glycoprotein have in MDR onset, experimental studies classified additionally the lipid micro-environment where P-gp is inserted as a determinant for the increased efflux capability demonstrated in MDR cell lines. Recently, a nonlinear model for drug-membrane interactions showed that, upon drug adsorption, long-range mechanical alterations are predicted to affect the P-gp ATPase function at external drug concentrations of ∼10-100 µM. However, our results also show that drug adsorption may also occur at P-gp nucleotide-binding domains where conformational changes drive the efflux cycle. Thus, we assessed the effect of drug adsorption to both protein-water and lipid-water interfaces by means of molecular dynamics simulations. The results show that free energies of adsorption are lower for modulators in both lipid/water and protein/water interfaces. Important differences in drug-protein interactions, protein dynamics and membrane biophysical characteristics were observed between the different classes. Therefore, we hypothesize that drug adsorption to the protein and lipid-water interface accounts for a complex network of events that affect the ability of transporters to efflux drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Trifosfato de Adenosina/metabolismo , Adsorção , Sítios de Ligação , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fenômenos Mecânicos , Conformação Proteica , Termodinâmica , Água/química
16.
Future Med Chem ; 7(7): 929-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061109

RESUMO

Multidrug-resistance (MDR) phenomena are a worldwide health concern. ATP-binding cassette efflux pumps as P-glycoprotein have been thoroughly studied in a frantic run to develop new efflux modulators capable to reverse MDR phenotypes. The study of efflux pumps has provided some key aspects on drug extrusion, however the answers could not be found solely on ATP-binding cassette transporters. Its counterpart - the plasma membrane - is now emerging as a critical structure able to modify drug behavior and efflux pump activity. Alterations in the membrane surrounding P-glycoprotein are now known to modulate drug efflux, with membrane-related biophysical, biochemical and mechanical aspects further increasing the complexity of an already multifaceted phenomena. This review summarizes the main knowledge comprising the plasma membrane role in MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
17.
Pharmacol Res ; 95-96: 42-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814188

RESUMO

Inactivation of the p53 tumor suppressor protein by interaction with murine double minute (MDM) proteins, MDM2 and MDMX, is a common event in human tumors expressing wild-type p53. In these tumors, the simultaneous inhibition of these interactions with MDMs, for a full p53 reactivation, represents a promising anticancer strategy. Herein, we report the identification of a dual inhibitor of the p53 interaction with MDM2 and MDMX, the (S)-tryptophanol derivative OXAZ-1, from the screening of a small library of enantiopure tryptophanol-derived oxazolopiperidone lactams, using a yeast-based assay. With human colon adenocarcinoma HCT116 cell lines expressing wild-type p53 (HCT116 p53(+/+)) and its p53-null isogenic derivative (HCT116 p53(-/-)), it was shown that OXAZ-1 induced a p53-dependent tumor growth-inhibitory effect. In fact, OXAZ-1 induced p53 stabilization, up-regulated p53 transcription targets, such as MDM2, MDMX, p21, Puma and Bax, and led to PARP cleavage, in p53(+/+), but not in p53(-/-), HCT116 cells. In addition, similar tumor cytotoxic effects were observed for OXAZ-1 against MDMX-overexpressing breast adenocarcinoma MCF-7 tumor cells, commonly described as highly resistant to MDM2-only inhibitors. In HCT116 p53(+/+) cells, the disruption of the p53 interaction with MDMs by OXAZ-1 was further confirmed by co-immunoprecipitation. It was also shown that OXAZ-1 potently triggered a p53-dependent mitochondria-mediated apoptosis, characterized by reactive oxygen species generation, mitochondrial membrane potential dissipation, Bax translocation to mitochondria, and cytochrome c release, and exhibited a p53-dependent synergistic effect with conventional chemotherapeutic drugs. Collectively, in this work, a novel selective activator of the p53 pathway is reported with promising antitumor properties to be explored either alone or combined with conventional chemotherapeutic drugs. Moreover, OXAZ-1 may represent a promising starting scaffold to search for new dual inhibitors of the p53-MDMs interaction.


Assuntos
Antineoplásicos/farmacologia , Proteínas Nucleares/metabolismo , Oxazóis/farmacologia , Piperidonas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Triptofano/análogos & derivados , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Células HCT116 , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Proteínas Nucleares/genética , Oxazóis/síntese química , Oxazóis/química , Piperidonas/síntese química , Piperidonas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Triptofano/química , Proteína Supressora de Tumor p53/genética
18.
Eur J Pharm Sci ; 66: 138-47, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25312347

RESUMO

One of the most appealing targets for anticancer treatment is the p53 tumor suppressor protein. In half of human cancers, this protein is inactivated due to endogenous negative regulators such as MDM2. Actually, restoring the p53 activity, particularly through the inhibition of its interaction with MDM2, is considered a valuable therapeutic strategy against cancers with a wild-type p53 status. In this work, we report the synthesis of nine enantiopure phenylalaninol-derived oxazolopyrrolidone lactams and the evaluation of their biological effects as p53-MDM2 interaction inhibitors. Using a yeast-based screening assay, two oxazoloisoindolinones, compounds 1b and 3a, were identified as potential p53-MDM2 interaction inhibitors. The molecular mechanism of oxazoloisoindolinone 3a was further validated in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116 p53(+/+)) and in its isogenic derivative without p53 (HCT116 p53(-/-)). Indeed, using these cells, we demonstrated that oxazoloisoindolinone 3a exhibited a p53-dependent in vitro antitumor activity through induction of G0/G1-phase cell cycle arrest and apoptosis. The selective activation of a p53-apoptotic pathway by oxazoloisoindolinone 3a was further supported by the occurrence of PARP cleavage only in p53-expressing HCT116 cells. Moreover, oxazoloisoindolinone 3a led to p53 protein stabilization and to the up-regulation of p53 transcriptional activity with increased expression levels of several p53 target genes, as p21(WAF1/CIP1), MDM2, BAX and PUMA, in p53(+/+) but not in p53(-/-) HCT116 cells. Additionally, the ability of oxazoloisoindolinone 3a to block the p53-MDM2 interaction in HCT116 p53(+/+) cells was confirmed by co-immunoprecipitation. Finally, the molecular docking analysis of the interactions between the synthesized compounds and MDM2 revealed that oxazoloisoindolinone 3a binds to MDM2. Altogether, this work adds, for the first time, the oxazoloisoindolinone scaffold to the list of chemotypes activators of a wild-type p53-pathway with promising antitumor activity. Moreover, it may open the way to the development of a new class of p53-MDM2 interaction inhibitors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Isoindóis/química , Isoindóis/farmacologia , Oxazóis/química , Oxazóis/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Simulação por Computador , Computadores Moleculares , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/genética
19.
Eur J Med Chem ; 80: 523-34, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24813880

RESUMO

A library comprising 44 diversely substituted aurones derivatives was synthesized by straightforward aldol condensation reactions of benzofuranones and the appropriately substituted benzaldehydes. Microwave enhanced synthesis using palladium catalyzed protocols was introduced as a powerful strategy for extending the chemical space around the aurone scaffold. Additionally, Mannich-base derivatives, containing a 7-aminomethyl-6-hydroxy substitution pattern at ring A, were also prepared. Screening against the chloroquine resistant Plasmodium falciparum W2 strain identified novel aurones with IC50 values in the low micromolar range. The most potent compounds contained a basic moiety, with the ability to accumulate in acidic digestive vacuole of the malaria parasite. However, none of those aurones revealed significant activity against hemozoin formation and falcipain-2, two validated targets expressed during the blood stage of P. falciparum infection and functional in digestive vacuole of the parasite. Overall, this study highlight (i) the usefulness of aurones as platforms for synthetic procedures using palladium catalyzed protocols to rapidly deliver lead compounds for further optimization and (ii) the potential of novel aurone derivatives as promising antimalarial compounds.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Desenho de Fármacos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/toxicidade , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/citologia , Vacúolos/efeitos dos fármacos
20.
ChemMedChem ; 8(10): 1648-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23960016

RESUMO

G-quadruplex (G4) DNA structures in telomeres and oncogenic promoter regions are potential targets for cancer therapy, and G4 ligands have been shown to modulate telomerase activity and oncogene transcription. Herein we report the synthesis and G4 thermal stabilisation effects, determined by FRET melting assays, of 20 indolo[3,2-b]quinolines mono-, di-, and trisubstituted with basic side chains. Molecular modelling studies were also performed in an attempt to rationalise the ligands' binding poses with G4. Overall, the results suggest that ligand binding and G4 DNA thermal stabilisation increase with an N5-methyl or a 7-carboxylate group and propylamine side chains, whereas selectivity between G4 and duplex DNA appears to be modulated by the number and relative position of basic side chains. From all the indoloquinoline derivatives studied, the novel trisubstituted compounds 3 d and 4 d, bearing a 7-(aminoalkyl)carboxylate side chain, stand out as the most promising compounds; they show high G4 thermal stabilisation (ΔTm values between 17 and 8 °C) with an inter-G4 ΔTm trend of Hsp90A>KRas21R≈F21T>c-Kit2, 10-fold selectivity for G4 over duplex DNA, and 100-fold selectivity for the HCT116 cancer cell line (IC50 and IC90: <10 µM) over primary rat hepatocytes. Compounds 3 d and 4 d also decreased protein expression levels of Hsp90 and KRas in HCT116 cancer cells.


Assuntos
Antineoplásicos/síntese química , Quadruplex G/efeitos dos fármacos , Indóis/síntese química , Quinolinas/química , Quinolonas/síntese química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Células HCT116 , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Quinolinas/síntese química , Quinolinas/farmacologia , Quinolonas/química , Quinolonas/farmacologia , Ratos , Relação Estrutura-Atividade , Proteínas ras/química , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA