Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; : 1-9, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990513

RESUMO

The drug rapamycin is a potent inhibitor of the mTOR complex, acting directly in the signaling cascade of this protein complex; interrupting cell proliferation, in addition to being an extremely efficient immunosuppressant. Currently this drug is being used in several types of cancer. Rapamycin has been a target of great interest within nanomedicine involving nanostructured systems for drug delivery aiming to increase the bioactivity and bioavailability of this drug. In addition, there is a constant search for analytical methods to identify and quantify this drug. Numerous high-performance liquid chromatography analytical techniques, mass spectrometry and immunoassay techniques have been employed efficiently in an attempt to develop increasingly sensitive analytical methods. Thus, this review sought to bring together current and relevant scientific works involving rapamycin and; besides analytical methods more used for quantification of this molecule.

2.
Crit Rev Anal Chem ; 52(5): 897-905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33138632

RESUMO

The drug rapamycin is a potent inhibitor of the mTOR complex, acting directly in the signaling cascade of this protein complex; interrupting cell proliferation, in addition to being an extremely efficient immunosuppressant. Currently this drug is being used in several types of cancer. Rapamycin has been a target of great interest within nanomedicine involving nanostructured systems for drug delivery aiming to increase the bioactivity and bioavailability of this drug. In addition, there is a constant search for analytical methods to identify and quantify this drug. Numerous high-performance liquid chromatography analytical techniques, mass spectrometry and immunoassay techniques have been employed efficiently in an attempt to develop increasingly sensitive analytical methods. Thus, this review sought to bring together current and relevant scientific works involving rapamycin and; besides analytical methods more used for quantification of this molecule.


Assuntos
Neoplasias , Sirolimo , Humanos , Espectrometria de Massas , Preparações Farmacêuticas , Transdução de Sinais , Sirolimo/química , Sirolimo/farmacologia
3.
Crit Rev Anal Chem ; 51(5): 445-453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32295395

RESUMO

Bevacizumab is a chimeric monoclonal human-murine antibody originated from murine monoclonal antibody (muMAb A4.6.1) with the human immunoglobulin IgG1. BVZ binds the extracellular portion of vascular endothelial growth factor receptors (VEGFR), which have tyrosine kinase activity. The mechanism of action of BVZ involves binding to VEGFR, Flt-1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2), inducing homodimerization of two receptor subunits, and, consequently, autophosphorylation of their tyrosine kinase domains located inside the cytoplasm. With the advent of nanostructured systems it is increasingly necessary to look for safe analytical methods, ensuring the reliability of the results obtained by them, becoming essential to ensure the quality of medicines. In this work, the incorporation of bevacizumab in to different drug delivery systems was presented. Moreover, detailed investigation was performed about methods for qualitative and quantitative analyses of bevacizumab, including, biological fluids, and drug delivery systems, were investigated. Most recently high performance liquid chromatography coupled with various detectors, liquid chromatography, mass spectrometry and ELISA were used for this purpose. Thus, this review was performed to evaluate the benefits of bevacizumab carried by nanostructured systems and the analytical methods available for detection and quantification of these drugs.


Assuntos
Inibidores da Angiogênese/análise , Bevacizumab/análise , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Bevacizumab/administração & dosagem , Bevacizumab/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Fosforilação , Reprodutibilidade dos Testes , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
4.
Curr Top Med Chem ; 15(4): 287-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25579344

RESUMO

Coordination compounds are substances in which a central metal atom is bonded to nonmetal atoms, or groups of atoms, called ligands. Examples include vitamin B12, hemoglobin, chlorophyll, dyes and pigments, as well as catalysts used in organic synthesis. Coordination compounds have received much attention in recent years. This interest was prompted by the discovery that several coordination compounds exhibit activity against bacteria, fungi and cancer. Some coordination compounds are not in clinical use, because of poor water solubility. Because they are unable to cross the lipid membranes of cells, bioavailability and efficacy are low. Some researchers have applied nanotechnology to coordination compounds, hoping to reduce the number of doses required and the severity of side effects, and also to improve biological activity. Nanotechnology can deliver active components in sufficient concentrations throughout treatment, guiding it to the desired location of action; conventional treatments do not meet these requirements. In this study we review some drug delivery systems based on nanotechnology, such as microemulsions (MEs), cyclodextrin (CD), polymeric nanoparticles (PN), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), magnetic and gold nanoparticles (MNPs / AuNPs) and liquid crystalline systems (LC), and coordination compounds.


Assuntos
Complexos de Coordenação/química , Portadores de Fármacos/química , Nanopartículas/química , Humanos , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA