Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982731

RESUMO

Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven ß-cell loss or by the progressive loss of ß-cell function, due to continued metabolic stresses. Although both α- and ß-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect ß-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two ß-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-ßH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-ßH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced ß-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-ßH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in ß-cells, participating both in cellular processes related to ß-cell physiology and in fostering survival against pro-apoptotic insults.


Assuntos
Citocinas , Células Secretoras de Insulina , Animais , Humanos , Ratos , Apoptose/genética , Linhagem Celular , Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/farmacologia , Palmitatos/metabolismo
2.
Environ Int ; 164: 107250, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461094

RESUMO

17ß-estradiol protects pancreatic ß-cells from apoptosis via the estrogen receptors ERα, ERß and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERß, or in dispersed islet cells from ERß knockout (BERKO) mice. However, the ERα and ERß agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERß form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERß as well as GPER activation by G1 decreased ERαß heterodimers. We propose that ERαß heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαß heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.


Assuntos
Disruptores Endócrinos , Células Secretoras de Insulina , Animais , Apoptose , Disruptores Endócrinos/toxicidade , Estradiol , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Chemosphere ; 265: 129051, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33250229

RESUMO

Bisphenol-S (BPS) and Bisphenol-F (BPF) are current Bisphenol-A (BPA) substitutes. Here we used pancreatic ß-cells from wild type (WT) and estrogen receptor ß (ERß) knockout (BERKO) mice to investigate the effects of BPS and BPF on insulin secretion, and the expression and activity of ion channels involved in ß-cell function. BPS or BPF rapidly increased insulin release and diminished ATP-sensitive K+ (KATP) channel activity. Similarly, 48 h treatment with BPS or BPF enhanced insulin release and decreased the expression of several ion channel subunits in ß-cells from WT mice, yet no effects were observed in cells from BERKO mice. PaPE-1, a ligand designed to preferentially trigger extranuclear-initiated ER pathways, mimicked the effects of bisphenols, suggesting the involvement of extranuclear-initiated ERß pathways. Molecular dynamics simulations indicated differences in ERß ligand-binding domain dimer stabilization and solvation free energy among different bisphenols and PaPE-1. Our data suggest a mode of action involving ERß whose activation alters three key cellular events in ß-cell, namely ion channel expression and activity, and insulin release. These results may help to improve the hazard identification of bisphenols.


Assuntos
Receptor beta de Estrogênio , Receptores de Estrogênio , Animais , Compostos Benzidrílicos/toxicidade , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Insulina , Canais Iônicos , Camundongos , Fenóis , Receptores de Estrogênio/genética
4.
Diabetologia ; 62(9): 1667-1680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31250031

RESUMO

AIMS/HYPOTHESIS: Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 diabetes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects are mediated via activation of oestrogen receptors α (ERα) and ß (ERß). Here we investigated whether low doses of BPA regulate the expression and function of ion channel subunits involved in beta cell function. METHODS: Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 µg/kg per day for 4 days) mice was performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the normalisation method based on the processing algorithm 'robust multi-array average'. Whole islets or dispersed islets from C57BL/6J or oestrogen receptor ß (ERß) knockout (Erß-/-) mice were treated with vehicle or BPA (1 nmol/l) for 48 h. Whole-cell patch-clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR. RESULTS: Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 downregulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+ channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets. The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 channels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA's effects on gene expression. Beta cells from ERß-/- mice did not present BPA-induced changes, suggesting that ERß mediates BPA's effects in pancreatic islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-width, leading to alteration in beta cell electrical activity. CONCLUSIONS/INTERPRETATION: Our data suggest that BPA modulates the expression and function of Na+ and K+ channels via ERß in mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells might play a role in the diabetogenic action of BPA described in animal models.


Assuntos
Compostos Benzidrílicos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Receptor beta de Estrogênio/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Fenóis/farmacologia , Animais , Receptor alfa de Estrogênio/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sódio/metabolismo
5.
EBioMedicine ; 36: 367-375, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30269996

RESUMO

BACKGROUND: Antibodies targeting PD-1 and its ligand PDL1 are used in cancer immunotherapy but may lead to autoimmune diseases, including type 1 diabetes (T1D). It remains unclear whether PDL1 is expressed in pancreatic islets of people with T1D and how is it regulated. METHODS: The expression of PDL1, IRF1, insulin and glucagon was evaluated in samples of T1D donors by immunofluorescence. Cytokine-induced PDL1 expression in the human beta cell line, EndoC-ßH1, and in primary human pancreatic islets was determined by real-time RT-PCR, flow cytometry and Western blot. Specific and previously validated small interference RNAs were used to inhibit STAT1, STAT2, IRF1 and JAK1 signaling. Key results were validated using the JAK inhibitor Ruxolitinib. FINDINGS: PDL1 was present in insulin-positive cells from twelve T1D individuals (6 living and 6 deceased donors) but absent from insulin-deficient islets or from the islets of six non-diabetic controls. Interferons-α and -γ, but not interleukin-1ß, induced PDL1 expression in vitro in human islet cells and EndoC-ßH1 cells. Silencing of STAT1 or STAT2 individually did not prevent interferon-α-induced PDL1, while blocking of JAKs - a proposed therapeutic strategy for T1D - or IRF1 prevented PDL1 induction. INTERPRETATION: These findings indicate that PDL1 is expressed in beta cells from people with T1D, possibly to attenuate the autoimmune assault, and that it is induced by both type I and II interferons via IRF1.


Assuntos
Antígeno B7-H1/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Interferon-alfa/metabolismo , Interferon gama/metabolismo , Ilhotas Pancreáticas/metabolismo , Adolescente , Adulto , Biomarcadores , Linhagem Celular , Criança , Pré-Escolar , Humanos , Células Secretoras de Insulina/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA