Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 11: 886, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477357

RESUMO

Macrophages host Leishmania major infection, which causes cutaneous Leishmaniasis in humans. In the murine model, resistance to infection depends on the host immunity mediated by CD4 T-cell cytokines and macrophages. In association to other stimuli, the Th1 cytokine IFN-γ induces NO-mediated microbial killing by M1/classically-activated macrophages. By contrast, the Th2 cytokine IL-4 promotes M2/alternatively activated macrophages, which express arginase-1 and shelter infection. Other cytokines, such as RANKL, might also participate in the crosstalk between T cells and macrophages to restrict parasite infection. RANKL and its receptor RANK are known to play an essential role in bone remodeling, by inducing osteoclatogenesis. It has also been shown that RANKL stimulates antigen-presenting cells, such as DCs and macrophages, to enhance T cell responses. Here we investigated how RANKL directly modulates the effector macrophage phenotypes and immunity to L. major parasites. We found that inflammatory peritoneal macrophages from B6 mice express RANK and M2 features, such as CD301 (MGL) and CD206 (mannose receptor). Nonetheless, treatment with RANKL or IFN-γ induced macrophage differentiation into more mature F40/80hi macrophages able to produce IL-12 and TNF-α. In parallel, macrophages treated with RANKL, IFN-γ, or RANKL along with IFN-γ progressively downregulated the expression of the M2 hallmarks MGL, arginase-1, and CCL17. Moreover, a synergism between IFN-γ and RANKL enhanced inducible NO synthase (iNOS) expression and NO production by macrophages. These results are consistent with the idea that RANKL helps IFN-γ to induce a M2-like to M1 phenotype shift. Accordingly, concomitant treatment with RANKL and IFN-γ promoted macrophage-mediated immunity to L. major, by inducing NO and ROS-dependent parasite killing. Furthermore, by cooperating with IFN-γ, endogenous RANKL engages CD4 T-cell help toward L. major-infected macrophages to upregulate M1 and Th1 cytokine responses. Therefore, RANKL, in combination with IFN-γ, is a potential local therapeutic tool to improve immune responses in Leishmaniasis, by skewing M2-like into effector M1 macrophages.


Assuntos
Diferenciação Celular/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/parasitologia , Ligante RANK/imunologia , Animais , Leishmania major , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais
2.
Front Immunol ; 8: 1560, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204144

RESUMO

As key cells, able to host and kill Leishmania parasites, inflammatory monocytes/macrophages are potential vaccine and therapeutic targets to improve immune responses in Leishmaniasis. Macrophage phenotypes range from M1, which express NO-mediated microbial killing, to M2 macrophages that might help infection. Resistance to Leishmaniasis depends on Leishmania species, mouse strain, and both innate and adaptive immunity. C57BL/6 (B6) mice are resistant and control infection, whereas Leishmania parasites thrive in BALB/c mice, which are susceptible to develop cutaneous lesions in the course of infection with Leishmania major, but not upon infection with Leishmania braziliensis. Here, we investigated whether a deficit in early maturation of inflammatory monocytes into macrophages in BALB/c mice underlies increased susceptibility to L. major versus L. braziliensis parasites. We show that, after infection with L. braziliensis, monocytes are recruited to peritoneum, differentiate into macrophages, and develop an M1 phenotype able to produce proinflammatory cytokines in both B6 and BALB/c mice. Nonetheless, more mature macrophages from B6 mice expressed inducible NO synthase (iNOS) and higher NO production in response to L. braziliensis parasites, whereas BALB/c mice developed macrophages expressing an incomplete M1 phenotype. By contrast, monocytes recruited upon L. major infection gave rise to immature macrophages that failed to induce an M1 response in BALB/c mice. Overall, these results are consistent with the idea that resistance to Leishmania infection correlates with improved maturation of macrophages in a mouse-strain and Leishmania-species dependent manner. All-trans retinoic acid (ATRA) has been proposed as a therapy to differentiate immature myeloid cells into macrophages and help immunity to tumors. To prompt monocyte to macrophage maturation upon L. major infection, we treated B6 and BALB/c mice with ATRA. Unexpectedly, treatment with ATRA reduced proinflammatory cytokines, iNOS expression, and parasite killing by macrophages. Moreover, ATRA promoted an M1 to M2 transition in bone marrow-derived macrophages from both strains. Therefore, ATRA uncouples macrophage maturation and development of M1 phenotype and downmodulates macrophage-mediated immunity to L. major parasites. Cautions should be taken for the therapeutic use of ATRA, by considering direct effects on innate immunity to intracellular pathogens.

3.
J Immunol ; 196(4): 1865-73, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26800873

RESUMO

Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.


Assuntos
Leishmaniose Cutânea/imunologia , Leucotrieno B4/biossíntese , Macrófagos/imunologia , Macrófagos/parasitologia , Neutrófilos/imunologia , Degranulação Celular/imunologia , Linhagem Celular , Técnicas de Cocultura , Fibronectinas/imunologia , Humanos , Leishmania , Leishmania mexicana , Leucotrieno B4/imunologia , Microscopia Eletrônica de Transmissão , Ativação de Neutrófilo/imunologia
4.
PLoS One ; 9(1): e85715, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416445

RESUMO

We investigated early cellular responses induced by infection with Leishmania major in macrophages from resistant C57/BL6 mice. Infection increased production of reactive oxygen species by resident, but not inflammatory peritoneal macrophages. In addition, infection increased activation of stress-activated protein kinases/c-Jun N-terminal kinases (SAPK/JNK) in resident, but not in inflammatory peritoneal macrophages. Infection also increased expression of membrane and soluble FasL, but infected macrophages remained viable after 48 h. Infection increased secretion of cytokines/chemokines TNF-α, IL-6, TIMP-1, IL-1RA, G-CSF, TREM, KC, MIP-1α, MIP-1ß, MCP-1, and MIP-2 in resident macrophages. Addition of antioxidants deferoxamine and N-acetylcysteine reduced ROS generation and JNK activation. Addition of antioxidants or JNK inhibitor SP600125 reduced secretion of KC. Furthermore, treatment with antioxidants or JNK inhibitor also reduced intracellular parasite replication. These results indicated that infection triggers a rapid cellular stress response in resident macrophages which induces proinflammatory signals, but is also involved in parasite survival and replication in host macrophages.


Assuntos
Leishmania major/fisiologia , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/parasitologia , Macrófagos/patologia , Macrófagos/parasitologia , Estresse Fisiológico , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Quimiocinas/biossíntese , Proteína Ligante Fas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leishmania major/efeitos dos fármacos , Leishmania major/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Parasitos/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Parasitos/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
J Leukoc Biol ; 90(6): 1191-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21934068

RESUMO

Th1/Th2 cytokines play a key role in immune responses to Leishmania major by controlling macrophage activation for NO production and parasite killing. MDSCs, including myeloid precursors and immature monocytes, produce NO and suppress T cell responses in tumor immunity. We hypothesized that NO-producing MDSCs could help immunity to L. major infection. Gr1(hi)(Ly6C(hi)) CD11b(hi) MDSCs elicited by L. major infection suppressed polyclonal and antigen-specific T cell proliferation. Moreover, L. major-induced MDSCs killed intracellular parasites in a NO-dependent manner and reduced parasite burden in vivo. By contrast, treatment with ATRA, which induces MDSCs to differentiate into macrophages, increased development of lesions, parasite load, and T cell proliferation in draining LNs. Altogether, these results indicate that NO-producing MDSCs help protective immunity to L. major infection, despite suppressed T cell proliferation.


Assuntos
Imunidade Celular , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Células Mieloides/imunologia , Células-Tronco/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Resistência à Doença/imunologia , Terapia de Imunossupressão , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/parasitologia , Células Mieloides/metabolismo , Células Mieloides/parasitologia , Células-Tronco/parasitologia , Células-Tronco/patologia , Linfócitos T/metabolismo , Linfócitos T/parasitologia
6.
J Infect Dis ; 204(6): 951-61, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21849292

RESUMO

Lipid bodies (lipid droplets) are lipid-rich organelles with functions in cell metabolism and signaling. Here, we investigate the mechanisms of Trypanosoma cruzi-induced lipid body formation and their contributions to host-parasite interplay. We demonstrate that T. cruzi-induced lipid body formation in macrophages occurs in a Toll-like receptor 2-dependent mechanism and is potentiated by apoptotic cell uptake. Lipid body biogenesis and prostaglandin E2 (PGE2) production triggered by apoptotic cell uptake was largely dependent of α(v)ß3 and transforming growth factor-ß signaling. T. cruzi-induced lipid bodies act as sites of increased PGE synthesis. Inhibition of lipid body biogenesis by the fatty acid synthase inhibitor C75 reversed the effects of apoptotic cells on lipid body formation, eicosanoid synthesis, and parasite replication. Our findings indicate that lipid bodies are highly regulated organelles during T. cruzi infection with roles in lipid mediator generation by macrophages and are potentially involved in T. cruzi-triggered escape mechanisms.


Assuntos
Doença de Chagas/patologia , Dinoprostona/metabolismo , Interações Hospedeiro-Parasita , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Macrófagos/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptor 2 Toll-Like/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento
7.
J Leukoc Biol ; 90(3): 575-82, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21685247

RESUMO

Neutrophils are considered the host's first line of defense against infections and have been implicated in the immunopathogenesis of Leishmaniasis. Leishmania parasites are inoculated alongside vectors' saliva, which is a rich source of pharmacologically active substances that interfere with host immune response. In the present study, we tested the hypothesis that salivary components from Lutzomyia longipalpis, an important vector of visceral Leishmaniasis, enhance neutrophil apoptosis. Murine inflammatory peritoneal neutrophils cultured in the presence of SGS presented increased surface expression of FasL and underwent caspase-dependent and FasL-mediated apoptosis. This proapoptosis effect of SGS on neutrophils was abrogated by pretreatment with protease as well as preincubation with antisaliva antibodies. Furthermore, in the presence of Leishmania chagasi, SGS also increased apoptosis on neutrophils and increased PGE(2) release and decreased ROS production by neutrophils, while enhancing parasite viability inside these cells. The increased parasite burden was abrogated by treatment with z-VAD, a pan caspase inhibitor, and NS-398, a COX-2 inhibitor. In the presence of SGS, Leishmania-infected neutrophils produced higher levels of MCP-1 and attracted a high number of macrophages by chemotaxis in vitro assays. Both of these events were abrogated by pretreatment of neutrophils with bindarit, an inhibitor of CCL2/MCP-1 expression. Taken together, our data support the hypothesis that vector salivary proteins trigger caspase-dependent and FasL-mediated apoptosis, thereby favoring Leishmania survival inside neutrophils, which may represent an important mechanism for the establishment of Leishmania infection.


Assuntos
Apoptose , Leishmaniose/imunologia , Neutrófilos/patologia , Neutrófilos/parasitologia , Psychodidae/imunologia , Saliva/imunologia , Animais , Caspases/metabolismo , Quimiocina CCL2/metabolismo , Quimiotaxia , Proteína Ligante Fas/metabolismo , Feminino , Interações Hospedeiro-Parasita , Immunoblotting , Leishmania , Leishmaniose/parasitologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Psychodidae/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Saliva/química , Saliva/parasitologia , Glândulas Salivares/citologia , Glândulas Salivares/imunologia , Glândulas Salivares/parasitologia
8.
Cell Mol Life Sci ; 68(11): 1863-70, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21369708

RESUMO

Neutrophils and macrophages are phagocytic cells that cooperate during inflammation and tissue repair. Neutrophils undergo apoptosis and are engulfed by macrophages. Engulfment modulates macrophage activation and microbicidal activity. Infection by Leishmania takes place in the context of tissue repair. This article discusses cellular and molecular mechanisms involved in the intimate cooperation of neutrophils and macrophages in Leishmania infection.


Assuntos
Leishmaniose/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Animais , Humanos , Imunidade Ativa , Ativação de Macrófagos
9.
J Immunol ; 185(4): 2044-50, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20660352

RESUMO

Clearance of apoptotic exudate neutrophils (efferocytosis) induces either pro- or anti-inflammatory responses in mouse macrophages depending on host genetic background. In this study, we investigated whether neutrophil efferocytosis induces a stable macrophage phenotype that could be recalled by late restimulation with LPS. Bone marrow-derived macrophages previously stimulated by pro- but not anti-inflammatory neutrophil efferocytosis expressed a regulatory/M2b phenotype characterized by low IL-12 and high IL-10 production following restimulation, increased expression of LIGHT/TNF superfamily 14, Th2-biased T cell responses, and permissive replication of Leishmania major. Induction of regulatory/M2b macrophages required neutrophil elastase activity and was partially dependent on TLR4 signaling. These results suggested that macrophage differentiation to a regulatory phenotype plays a role in resolution of inflammation but could contribute to increased humoral Ab responses and parasite persistence in the infected host.


Assuntos
Interleucina-10/metabolismo , Interleucina-12/metabolismo , Macrófagos/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Animais , Apoptose/imunologia , Células Cultivadas , Inflamação/imunologia , Interferon gama/imunologia , Interferon gama/farmacologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Elastase de Leucócito/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Neutrófilos/citologia , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo , Receptor 4 Toll-Like/metabolismo
10.
J Biol Chem ; 285(18): 13388-96, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20106975

RESUMO

Upon activation, cytotoxic CD8(+) T lymphocytes are desialylated exposing beta-galactose residues in a physiological change that enhances their effector activity and that can be monitored on the basis of increased binding of the lectin peanut agglutinin. Herein, we investigated the impact of sialylation mediated by trans-sialidase, a specific and unique Trypanosoma transglycosylase for sialic acid, on CD8(+) T cell response of mice infected with T. cruzi. Our data demonstrate that T. cruzi uses its trans-sialidase enzyme to resialylate the CD8(+) T cell surface, thereby dampening antigen-specific CD8(+) T cell response that might favor its own persistence in the mammalian host. Binding of the monoclonal antibody S7, which recognizes sialic acid-containing epitopes on the 115-kDa isoform of CD43, was augmented on CD8(+) T cells from ST3Gal-I-deficient infected mice, indicating that CD43 is one sialic acid acceptor for trans-sialidase activity on the CD8(+) T cell surface. The cytotoxic activity of antigen-experienced CD8(+) T cells against the immunodominant trans-sialidase synthetic peptide IYNVGQVSI was decreased following active trans-sialidase-mediated resialylation in vitro and in vivo. Inhibition of the parasite's native trans-sialidase activity during infection strongly decreased CD8(+) T cell sialylation, reverting it to the glycosylation status expected in the absence of parasite manipulation increasing mouse survival. Taken together, these results demonstrate, for the first time, that T. cruzi subverts sialylation to attenuate CD8(+) T cell interactions with peptide-major histocompatibility complex class I complexes. CD8(+) T cell resialylation may represent a sophisticated strategy to ensure lifetime host parasitism.


Assuntos
Antígenos de Protozoários/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Peptídeos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/enzimologia , Doença de Chagas/genética , Doença de Chagas/imunologia , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Glicosilação , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Leucossialina/genética , Leucossialina/imunologia , Leucossialina/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/imunologia , Neuraminidase/imunologia , Peptídeos/genética , Peptídeos/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Sialiltransferases/genética , Sialiltransferases/imunologia , Sialiltransferases/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , beta-Galactosídeo alfa-2,3-Sialiltransferase
11.
Eur J Immunol ; 40(2): 417-25, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19950177

RESUMO

Phagocytic removal of apoptotic lymphocytes exacerbates replication of Trypanosoma cruzi in macrophages. We investigated the presence of Ab against apoptotic lymphocytes in T. cruzi infection and the role of these Ab in parasite replication. Both control and chagasic serum contained IgG Ab that opsonized apoptotic lymphocytes. Treatment of apoptotic lymphocytes with purified IgG from chagasic, but not control serum, reduced T. cruzi replication in macrophages. The protective effect of chagasic IgG depended on Fcgamma receptors, as demonstrated by the requirement for the intact Fc portion of IgG, and the effect could be abrogated by treating macrophages with an anti-CD16/CD32 Fab fragment. Chagasic IgG displayed increased reactivity against a subset of apoptotic cell Ag, as measured by flow cytometry and immunoblot analyses. Apoptotic lymphocytes treated with chagasic IgG, but not control IgG, increased production of TNF-alpha, while decreasing production of TGF-beta1 by infected macrophages. Increased control of parasite replication required TNF-alpha production. Previous immunization with apoptotic cells or injection of apoptotic cells opsonized with chagasic IgG reduced parasitemia in infected mice. These results indicate that Ab raised against apoptotic cells could play a protective role in control of T. cruzi replication by macrophages.


Assuntos
Anticorpos Antiprotozoários/imunologia , Doença de Chagas/imunologia , Linfócitos/imunologia , Macrófagos/imunologia , Trypanosoma cruzi/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Transferência Adotiva , Animais , Anticorpos Antiprotozoários/farmacologia , Apoptose , Células Cultivadas , Doença de Chagas/parasitologia , Doença de Chagas/terapia , Técnicas de Cocultura , Citometria de Fluxo , Immunoblotting , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/imunologia , Parasitemia/parasitologia , Parasitemia/terapia , Fagocitose , Fator de Crescimento Transformador beta1/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento
12.
Mem. Inst. Oswaldo Cruz ; 104(supl.1): 259-262, July 2009.
Artigo em Inglês | LILACS | ID: lil-520887

RESUMO

Host cell apoptosis plays an important immune regulatory role in parasitic infections. Infection of mice with Trypanosoma cruzi, the causative agent of Chagas disease, induces lymphocyte apoptosis. In addition, phagocytosis of apoptotic cells stimulates the growth of T. cruzi inside host macrophages. In spite of progress made in this area, the importance of apoptosis in the pathogenesis of Chagas disease remains unclear. Here we review the evidence of apoptosis in mice and humans infected with T. cruzi. We also discuss the mechanisms by which apoptosis can influence underlying host responses and tissue damage during Chagas disease progression.


Assuntos
Animais , Humanos , Camundongos , Apoptose/imunologia , Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Trypanosoma cruzi/fisiologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Progressão da Doença , Imunidade Celular , Fagocitose/imunologia , Trypanosoma cruzi/imunologia
13.
Cell Microbiol ; 11(1): 106-20, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19016791

RESUMO

Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major. Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas ISP2 is also expressed in the mammalian amastigote stage. Recombinant ISP2 inhibited neutrophil elastase, trypsin and chymotrypsin with K(i)s between 7.7 and 83 nM. L. major ISP2-ISP3 double null mutants (Deltaisp2/3) were created. These grew normally as promastigotes, but were internalized by macrophages more efficiently than wild-type parasites due to the upregulation of phagocytosis by a mechanism dependent on serine peptidase activity. Deltaisp2/3 promastigotes transformed to amastigotes, but failed to divide for 48 h. Intracellular multiplication of Deltaisp2/3 was similar to wild-type parasites when serine peptidase inhibitors were present, suggesting that defective intracellular growth results from the lack of serine peptidase inhibition during promastigote uptake. Deltaisp2/3 mutants were more infective than wild-type parasites to BALB/c mice at the early stages of infection, but became equivalent as the infection progressed. These data support the hypothesis that ISPs of L. major target host serine peptidases and influence the early stages of infection of the mammalian host.


Assuntos
Leishmania major/imunologia , Leishmania major/patogenicidade , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Inibidores de Serina Proteinase/metabolismo , Sequência de Aminoácidos , Animais , Quimotripsina/antagonistas & inibidores , Deleção de Genes , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Elastase de Leucócito/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Fagocitose/imunologia , Proteínas de Protozoários/genética , Alinhamento de Sequência , Inibidores de Serina Proteinase/genética , Tripsina/metabolismo
14.
Microbes Infect ; 11(2): 181-90, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19070676

RESUMO

We investigated the role of autophagy in infection of macrophages by Leishmania amazonensis. Induction of autophagy by IFN-gamma or starvation increased intracellular parasite load and the percentages of infected macrophages from BALB/c but not from C57BL/6 mice. In contrast, starvation did not affect the replication of either Leishmania major or Trypanosoma cruzi in BALB/c macrophages. In BALB/c macrophages, starvation resulted in increased monodansylcadaverine staining and in the appearance of double-membrane and myelin-like vesicles characteristic of autophagosomes. Increased parasite load was associated with a reduction in NO levels and was attenuated by wortmannin, an inhibitor of autophagy. In infected macrophages from BALB/c, but not from C57BL/6 mice, starvation increased the number of lipid bodies and the amounts of PGE(2) produced. Exogenous PGE(2) increased parasite load in macrophages from BALB/c, but not C57BL/6 mice. The cyclooxygenase inhibitor indomethacin prevented the increase of parasite load in starved BALB/c macrophages, and actually induced parasite killing. These results suggest that autophagy regulates the outcome of L. amazonensis infection in macrophages in a host strain specific manner.


Assuntos
Autofagia , Leishmania mexicana/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Prostaglandinas/metabolismo , Trypanosoma cruzi/imunologia
15.
J Leukoc Biol ; 84(2): 389-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18483206

RESUMO

Neutrophils are involved in the initial steps of most responses to pathogens. In the present study, we evaluated the effects of the interaction of apoptotic vs. necrotic human neutrophils on macrophage infection by Leishmania amazonensis. Phagocytosis of apoptotic, but not viable, neutrophils by Leishmania-infected macrophages led to an increase in parasite burden via a mechanism dependent on TGF-beta1 and PGE2. Conversely, infected macrophages' uptake of necrotic neutrophils induced killing of L. amazonensis. Leishmanicidal activity was dependent on TNF-alpha and neutrophilic elastase. Nitric oxide was not involved in the killing of parasites, but the interaction of necrotic neutrophils with infected macrophages resulted in high superoxide production, a process reversed by catalase, an inhibitor of reactive oxygen intermediate production. Initial events after Leishmania infection involve interactions with neutrophils; we demonstrate that phagocytosis of these cells in an apoptotic or necrotic stage can influence the outcome of infection, driving either parasite survival or destruction.


Assuntos
Leishmaniose Cutânea/fisiopatologia , Macrófagos/parasitologia , Neutrófilos/imunologia , Neutrófilos/fisiologia , Animais , Apoptose , Catalase/farmacologia , Efeitos Psicossociais da Doença , Dinoprostona/fisiologia , Humanos , Leishmania mexicana/patogenicidade , Leishmania mexicana/fisiologia , Leishmaniose Cutânea/patologia , Necrose , Neutrófilos/patologia , Fagocitose , Superóxidos/metabolismo , Fator de Crescimento Transformador beta1/fisiologia
16.
Cell Microbiol ; 10(6): 1274-85, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18284419

RESUMO

The effects of capsular polysaccharides, galactoxylomannan (GalXM) and glucuronoxylomannan (GXM), from acapsular (GXM negative) and encapsulate strains of Cryptococcus neoformans were investigated in RAW 264.7 and peritoneal macrophages. Here, we demonstrate that GalXM and GXM induced different cytokines profiles in RAW 264.7 macrophages. GalXM induced production of TNF-alpha, NO and iNOS expression, while GXM predominantly induced TGF-beta secretion. Both GalXM and GXM induced early morphological changes identified as autophagy and late macrophages apoptosis mediated by Fas/FasL interaction, a previously unidentified mechanism of virulence. GalXM was more potent than GXM at induction of Fas/FasL expression and apoptosis on macrophages in vitro and in vivo. These findings uncover a mechanism by which capsular polysaccharides from C. neoformans might compromise host immune responses.


Assuntos
Cápsulas Bacterianas/química , Cryptococcus neoformans/química , Proteína Ligante Fas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos/farmacologia , Animais , Apoptose , Células Cultivadas , Criptococose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Polissacarídeos/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Eur J Immunol ; 38(1): 139-46, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18085669

RESUMO

Infection with Trypanosoma cruzi causes expansion of subcutaneous (SLN) and atrophy of mesenteric (MLN) lymph nodes. Here we show that excision of MLN increased parasitemia in T. cruzi-infected mice. We then studied how apoptosis of MLN cells affects immune responses to infection. T cell apoptosis increased in the MLN compared to SLN in T. cruzi-infected mice. Absolute numbers of naïve T cells decreased, and activated T cells failed to accumulate in MLN during infection. In addition, activated T cells from MLN produced less IL-2, IFN-gamma, IL-4, and IL-10 than T cells from SLN. Treatment with IL-4 or with caspase-9 inhibitor increased the recovery of viable T cells in vitro. Treatment with caspase-9 inhibitor also increased the production of cytokines by MLN T cells from infected mice. Moreover, injection of a pan caspase inhibitor prevented MLN atrophy during T. cruzi infection. Caspase-9, but not caspase-8, inhibitor also reduced MLN atrophy and increased the recovery of naïve and activated T cells from MLN. These findings indicate that caspase-mediated apoptosis and defective cytokine production are implicated in MLN atrophy and affect immune responses to T. cruzi infection.


Assuntos
Apoptose/imunologia , Doença de Chagas/imunologia , Linfonodos/imunologia , Mesentério/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Atrofia , Caspases/efeitos dos fármacos , Caspases/imunologia , Caspases/metabolismo , Citocinas/biossíntese , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Linfonodos/microbiologia , Linfonodos/patologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/microbiologia , Linfócitos T/patologia , Trypanosoma cruzi
18.
J Immunol ; 179(6): 3988-94, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17785837

RESUMO

We investigated the role of neutrophil elastase (NE) in interactions between murine inflammatory neutrophils and macrophages infected with the parasite Leishmania major. A blocker peptide specific for NE prevented the neutrophils from inducing microbicidal activity in macrophages. Inflammatory neutrophils from mutant pallid mice were defective in the spontaneous release of NE, failed to induce microbicidal activity in wild-type macrophages, and failed to reduce parasite loads upon transfer in vivo. Conversely, purified NE activated macrophages and induced microbicidal activity dependent on secretion of TNF-alpha. Induction of macrophage microbicidal activity by either neutrophils or purified NE required TLR4 expression by macrophages. Injection of purified NE shortly after infection in vivo reduced the burden of L. major in draining lymph nodes of TLR4-sufficient, but not TLR4-deficient mice. These results indicate that NE plays a previously unrecognized protective role in host responses to L. major infection.


Assuntos
Líquido Intracelular/imunologia , Líquido Intracelular/parasitologia , Leishmania major/imunologia , Elastase de Leucócito/fisiologia , Macrófagos/imunologia , Macrófagos/parasitologia , Neutrófilos/imunologia , Receptor 4 Toll-Like/metabolismo , Transferência Adotiva , Animais , Células Cultivadas , Técnicas de Cocultura , Ativação Enzimática/imunologia , Humanos , Líquido Intracelular/enzimologia , Leishmania major/crescimento & desenvolvimento , Elastase de Leucócito/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/enzimologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Neutrófilos/patologia , Neutrófilos/transplante , Transporte Proteico/imunologia , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética
19.
J Leukoc Biol ; 81(4): 942-51, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17261545

RESUMO

We investigated the role of the Fas ligand (FasL)/Fas death pathway on apoptosis and cytokine production by T cells in Trypanosoma cruzi infection. Anti-FasL, but not anti-TNF-alpha or anti-TRAIL, blocked activation-induced cell death of CD8 T cells and increased secretion of IL-10 and IL-4 by CD4 T cells from T. cruzi-infected mice. CD4 and CD8 T cells up-regulated Fas/FasL expression during T. cruzi infection. However, Fas expression increased earlier in CD8 T cells, and a higher proportion of CD8 T cells was activated and expressed IFN-gamma compared with CD4 T cells. Injection of anti-FasL in infected mice reduced parasitemia and CD8 T cell apoptosis and increased the ratio of CD8:CD4 T cells recovered from spleen and peritoneum. FasL blockade increased the number of activated T cells, enhanced NO production, and reduced parasite loads in peritoneal macrophages. Injection of anti-FasL increased IFN-gamma secretion by splenocytes responding to T. cruzi antigens but also exacerbated production of type 2 cytokines IL-10 and IL-4 at a late stage of acute infection. These results indicate that the FasL/Fas death pathway regulates apoptosis and coordinated cytokine responses by type 1 CD8 and type 2 CD4 T cells in T. cruzi infection.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Doença de Chagas/imunologia , Transdução de Sinais , Receptor fas/metabolismo , Animais , Apoptose , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Proliferação de Células , Doença de Chagas/metabolismo , Citocinas/metabolismo , Proteína Ligante Fas/metabolismo , Imunidade Celular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Imunológicos , Regulação para Cima
20.
J Infect Dis ; 192(6): 1127-34, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16107969

RESUMO

Apoptosis mediated by Fas ligand (FasL) initiates inflammation characterized by neutrophilic infiltration. Neutrophils undergo apoptosis and are ingested by macrophages. Clearance of dead neutrophils leads to prostaglandin- and transforming growth factor-beta-dependent replication of Leishmania major in macrophages from susceptible mice. How L. major induces neutrophil turnover in a physiological setting is unknown. We show that BALB/c FasL-sufficient mice are more susceptible to L. major infection than are FasL-deficient mice. FasL promotes the apoptosis of infected resident macrophages and attracts neutrophils. Furthermore, FasL-sufficient neutrophils exacerbate L. major replication in macrophages, whereas FasL-deficient neutrophils induce parasite killing. These contrasting effects are due to delaying apoptosis and the clearance of FasL-deficient neutrophils. The transfer of neutrophils exacerbates infection in FasL-sufficient mice but reduces infection in FasL-deficient mice. Depletion of neutrophils abolishes the susceptibility of FasL-sufficient mice. These data illustrate a deleterious role of the FasL-mediated turnover of neutrophils on L. major infection.


Assuntos
Leishmania major/crescimento & desenvolvimento , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Glicoproteínas de Membrana/imunologia , Neutrófilos/imunologia , Neutrófilos/patologia , Animais , Apoptose , Morte Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteína Ligante Fas , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA