Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Pain Res (Lausanne) ; 3: 852249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369538

RESUMO

The temporomandibular joint is responsible for fundamental functions. However, mechanical overload or microtraumas can cause temporomandibular disorders (TMD). In addition to external factors, it is known that these conditions are involved in complex biological mechanisms, such as activation of the immune system, activation of the inflammatory process, and degradation of extracellular matrix (ECM) components. The ECM is a non-cellular three-dimensional macromolecular network; its most studied components is hyaluronic acid (HA). HA is naturally found in many tissues, and most of it has a high molecular weight. HA has attributed an essential role in the viscoelastic properties of the synovial fluid and other tissues. Additionally, it has been shown that HA molecules can contribute to other mechanisms in the processes of injury and healing. It has been speculated that the degradation product of high molecular weight HA in healthy tissues during injury, a low molecular weight HA, may act as damage-associated molecular patterns (DAMPs). DAMPs are multifunctional and structurally diverse molecules that play critical intracellular roles in the absence of injury or infection. However, after cellular damage or stress, these molecules promote the activation of the immune response. Fragments from the degradation of HA can also act as immune response activators. Low molecular weight HA would have the ability to act as a pro-inflammatory marker, promoting the activation and maturation of dendritic cells, the release of pro-inflammatory cytokines such as interleukin 1 beta (IL-1ß), and tumor necrosis factor α (TNF-α). It also increases the expression of chemokines and cell proliferation. Many of the pro-inflammatory effects of low molecular weight HA are attributed to its interactions with the activation of toll-like receptors (TLRs 2 and 4). In contrast, the high molecular weight HA found in healthy tissues would act as an anti-inflammatory, inhibiting cell growth and differentiation, decreasing the production of inflammatory cytokines, and reducing phagocytosis by macrophages. These anti-inflammatory effects are mainly attributed to the interaction of high-weight HA with the CD44 receptor. In this study, we review the action of the HA as a DAMP and its functions on pain control, more specifically in orofacial origin (e.g., TMD).

2.
Signal Transduct Target Ther ; 6(1): 45, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526777

RESUMO

Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.


Assuntos
Lisofosfolipídeos/genética , Neovascularização Patológica/genética , Fosfolipídeos/genética , Humanos , Lisofosfolipídeos/metabolismo , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Fosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/uso terapêutico , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/uso terapêutico , Transdução de Sinais/genética
3.
Arch Oral Biol ; 73: 121-128, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27764680

RESUMO

OBJECTIVE: This study was conducted to identify and characterize dental follicle stem cells (DFSCs) by analyzing expression of embryonic, mesenchymal and neural stem cells surface markers. Design Dental follicle cells (DFCs) were evaluated by immunocytochemistry using embryonic stem cells markers (OCT4 and SOX2), mesenchmal stem cells (MSCs) markers (Notch1, active Notch1, STRO, CD44, HLA-ABC, CD90), neural stem cells markers (Nestin and ß-III-tubulin), neural crest stem cells (NCSCs) markers (p75 and HNK1) and a glial cells marker (GFAP). RT-PCR was performed to identify the expression of OCT4 and NANOG in DFCs and dental follicle tissue. RESULTS: Immunocytochemistry and RT-PCR analysis revealed that a significant proportion of the DFCs evaluated expressed human embryonic stem cells marker OCT4 (75%) whereas NANOG was weakly expressed. A considerable amount of MSCs (90%) expressed Notch1, STRO, CD44 and HLA-ABC. However, they were weakly positive for CD90. Moreover, it was possible to demonstrate that dental follicle contains a significant proportion of neural stem/progenitors cells, expressing ß-III-tubulin (90%) and nestin (70%). Interestingly, immunocytochemistry showed DFCs positive for p75 (50%), HNK1 (<10%) and a small proportion (<20%) of GFAP-positive cells. This is the first study reporting the presence of NCSCs and glial-like cells in the dental follicle. CONCLUSIONS: The results of the present study suggest the occurrence of heterogeneous populations of stem cells, particularly neural stem/progenitor cells, in the dental follicle, Therefore, the human dental follicle might be a promising source of adult stem cells for regenerative purposes.


Assuntos
Saco Dentário/citologia , Células-Tronco Mesenquimais/metabolismo , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas/metabolismo , Adolescente , Técnicas de Cultura de Células , Voluntários Saudáveis , Humanos , Imuno-Histoquímica , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA