Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gen Intern Med ; 38(12): 2686-2694, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36973572

RESUMO

BACKGROUND: Race and ethnicity, socioeconomic class, and geographic location are well-known social determinants of health in the US. Studies of population mortality often consider two, but not all three of these risk factors. OBJECTIVES: To disarticulate the associations of race (whiteness), class (socioeconomic status), and place (county) with risk of cause-specific death in the US. DESIGN: We conducted a retrospective analysis of death certificate data. Bayesian regression models, adjusted for age and race/ethnicity from the American Community Survey and the county Area Deprivation Index, were used for inference. MAIN MEASURES: County-level mortality for 11 leading causes of death (1999-2019) and COVID-19 (2020-2021). KEY RESULTS: County "whiteness" and socioeconomic status modified death rates; geospatial effects differed by cause of death. Other factors equal, a 20% increase in county whiteness was associated with 5-8% increase in death from three causes and 4-15% reduction in death from others, including COVID-19. Other factors equal, advantaged counties had significantly lower death rates, even when juxtaposed with disadvantaged ones. Patterns of residual risk, measured by spatial county effects, varied by cause of death; for example: cancer and heart disease death rates were better explained by age, socioeconomic status, and county whiteness than were COVID-19 and suicide deaths. CONCLUSIONS: There are important independent contributions from race, class, and geography to risk of death in the US.


Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , Causas de Morte , Estudos Retrospectivos , Teorema de Bayes , Brancos
2.
Mol Biol Cell ; 29(22): 2737-2750, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207827

RESUMO

SMC (structural maintenance of chromosomes) complexes condensin and cohesin are crucial for proper chromosome organization. Condensin has been reported to be a mechanochemical motor capable of forming chromatin loops, while cohesin passively diffuses along chromatin to tether sister chromatids. In budding yeast, the pericentric region is enriched in both condensin and cohesin. As in higher-eukaryotic chromosomes, condensin is localized to the axial chromatin of the pericentric region, while cohesin is enriched in the radial chromatin. Thus, the pericentric region serves as an ideal model for deducing the role of SMC complexes in chromosome organization. We find condensin-mediated chromatin loops establish a robust chromatin organization, while cohesin limits the area that chromatin loops can explore. Upon biorientation, extensional force from the mitotic spindle aggregates condensin-bound chromatin from its equilibrium position to the axial core of pericentric chromatin, resulting in amplified axial tension. The axial localization of condensin depends on condensin's ability to bind to chromatin to form loops, while the radial localization of cohesin depends on cohesin's ability to diffuse along chromatin. The different chromatin-tethering modalities of condensin and cohesin result in their geometric partitioning in the presence of an extensional force on chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Centrômero/metabolismo , Cromátides/metabolismo , DNA/metabolismo , Metáfase , Modelos Biológicos , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA