Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Placenta ; 145: 117-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128222

RESUMO

INTRODUCTION: Hematopoietic stem cells are cells that differentiate into blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal/fetal health, cross-talk between placental and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects. METHODS: We used K-562 and BeWo cells as in vitro models of hematopoietic stem cells and placental syncytiotrophoblasts, respectively. We treated K-562 cells with medium conditioned by incubation with BeWo cells, medium conditioned with BeWo cells treated with 10 µM MEHP for 24 h, or controls treated with unconditioned medium. We extracted K-562 cell RNA, performed RNA sequencing, then conducted differential gene expression and pathway analysis. RESULTS: Relative to controls, K-562 cells treated with BeWo cell conditioned medium differentially expressed 173 genes (FDR<0.05 and fold-change>2.0), including 2.4-fold upregulatation of tropomyosin 4 (TPM4, a cytoskeletal regulator involved in processes such as cell morphology and migration) and 3.3-fold upregulatation of sphingosine-1-phosphate receptor 3 (S1PR3, a mediator of myeloid cell differentiation and inflammatory responses). Upregulated genes were enriched for pathways including stem cell maintenance, cell proliferation and immune processes. Downregulated genes were enriched for terms involved in protein translation and transcriptional regulation. MEHP treatment differentially expressed eight genes (FDR<0.05), including genes involved in lipid metabolism (e.g., Perilipin 2, fold-change: 1.4; Carnitine Palmitoyltransferase 1A, fold-change: 1.4). DISCUSSION: K-562 cells, a model of hematopoietic stem cells, are responsive to media conditioned by placental cells, potentially impacting pathways like stem cell maintenance.


Assuntos
Dietilexilftalato/análogos & derivados , Ácidos Ftálicos , Placenta , Transcriptoma , Gravidez , Feminino , Humanos , Placenta/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco Hematopoéticas
2.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697338

RESUMO

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Assuntos
Asma , Metilação de DNA , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Carcinogênese , Inflamação , Estações do Ano
3.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034658

RESUMO

Background: Hematopoietic stem cells are cells that differentiate into all blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal and fetal health, cross-talk between placental cells and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects. Methods: We used K-562 and BeWo cells as in vitro models of hematopoietic stem cells and placental syncytiotrophoblasts, respectively. We treated K-562 cells with medium conditioned by incubation with BeWo cells, medium conditioned with BeWo cells treated with 10 µM MEHP for 24 hours, or controls treated with unconditioned medium. We extracted K-562 cell RNA, performed RNA sequencing, then conducted differential gene expression and pathway analysis by treatment group. Results: Relative to controls, K-562 cells treated with BeWo cell conditioned medium differentially expressed 173 genes (FDR<0.05 and fold-change>2.0), including 2.4 fold upregulatation of TPM4 and 3.3 fold upregulatation of S1PR3. Upregulated genes were enriched for pathways including stem cell maintenance, cell proliferation and immune processes. Downregulated genes were enriched for terms involved in protein translation and transcriptional regulation. MEHP treatment differentially expressed eight genes (FDR<0.05), including genes involved in lipid metabolism (PLIN2, fold-change: 1.4; CPT1A, fold-change: 1.4). Conclusion: K-562 cells, a model of hematopoietic stem cells, are responsive to media conditioned by placental cells, potentially impacting pathways like stem cell maintenance and proliferation.

4.
Toxicology ; 483: 153371, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396003

RESUMO

Numerous Superfund sites are contaminated with the volatile organic chemical trichloroethylene (TCE). In women, exposure to TCE in pregnancy is associated with reduced birth weight. Our previous study reported that TCE exposure in pregnant rats decreased fetal weight and elevated oxidative stress biomarkers in placentae, suggesting placental injury as a potential mechanism of TCE-induced adverse birth outcomes. In this study, we investigated if co-exposure with the antioxidant N-acetylcysteine (NAC) attenuates TCE exposure effects on RNA expression. Timed-pregnant Wistar rats were exposed orally to 480 mg TCE/kg/day on gestation days 6-16. Exposure of 200 mg NAC/kg/day alone or as a pre/co-exposure with TCE occurred on gestation days 5-16 to stimulate antioxidant genes prior to TCE exposure. Tissue was collected on gestation day 16. In male and female placentae, we evaluated TCE- and/or NAC-induced changes to gene expression and pathway enrichment analyses using false discovery rate (FDR) and fold-change criteria. In female placentae, exposure to TCE caused significant differential expression 129 genes while the TCE+NAC altered 125 genes, compared with controls (FDR< 0.05 + fold-change >1). In contrast, in male placentae TCE exposure differentially expressed 9 genes and TCE+NAC differentially expressed 35 genes, compared with controls (FDR< 0.05 + fold-change >1). NAC alone did not significantly alter gene expression in either sex. Differentially expressed genes observed with TCE exposure were enriched in mitochondrial biogenesis and oxidative phosphorylation pathways in females whereas immune system pathways and endoplasmic reticulum stress pathways were differentially expressed in both sexes (FDR<0.05). TCE treatment was differentially enriched for genes regulated by the transcription factors ATF6 (both sexes) and ATF4 (males only), indicating a cellular condition triggered by misfolded proteins during endoplasmic reticulum stress. This study demonstrates novel genes and pathways involved in TCE-induced placental injury and showed antioxidant co-treatment largely did not attenuate TCE exposure effects.


Assuntos
Tricloroetileno , Feminino , Masculino , Ratos , Gravidez , Animais , Tricloroetileno/toxicidade , Tricloroetileno/metabolismo , Acetilcisteína/farmacologia , Ratos Wistar , Antioxidantes/farmacologia , Placenta/metabolismo
5.
Commun Biol ; 5(1): 1313, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36446949

RESUMO

Higher maternal pre-pregnancy body mass index (ppBMI) is associated with increased neonatal morbidity, as well as with pregnancy complications and metabolic outcomes in offspring later in life. The placenta is a key organ in fetal development and has been proposed to act as a mediator between the mother and different health outcomes in children. The overall aim of the present work is to investigate the association of ppBMI with epigenome-wide placental DNA methylation (DNAm) in 10 studies from the PACE consortium, amounting to 2631 mother-child pairs. We identify 27 CpG sites at which we observe placental DNAm variations of up to 2.0% per 10 ppBMI-unit. The CpGs that are differentially methylated in placenta do not overlap with CpGs identified in previous studies in cord blood DNAm related to ppBMI. Many of the identified CpGs are located in open sea regions, are often close to obesity-related genes such as GPX1 and LGR4 and altogether, are enriched in cancer and oxidative stress pathways. Our findings suggest that placental DNAm could be one of the mechanisms by which maternal obesity is associated with metabolic health outcomes in newborns and children, although further studies will be needed in order to corroborate these findings.


Assuntos
Metilação de DNA , Placenta , Recém-Nascido , Gravidez , Criança , Humanos , Feminino , Índice de Massa Corporal , Mães , Saúde da Criança
6.
Mutat Res Rev Mutat Res ; 789: 108415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35690418

RESUMO

BACKGROUND: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. METHODS: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5-10 years from 8 cohorts (n = 4268). RESULTS: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10-7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10-6) in older children and had methylation differences in the same direction. CONCLUSIONS: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.


Assuntos
Metilação de DNA , Epigenoma , Adolescente , Criança , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA