Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 300: 120226, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372471

RESUMO

Radical pelvic surgery is commonly accompanied by the risk of postoperative erectile dysfunction induced by cavernous nerve injury (CNI-ED). The strategy of using adipose mesenchymal stem cell-derived exosomes (ADSC-Exo) to treat neurodegenerative diseases has shown promising results. However, it remains challenging to prolong the retention of unbound ADSC-Exo in damaged tissues to exert therapeutic effects. Herein, we develop a novel injectable thermo-sensitive hydroxyethyl chitosan/sodium ß-glycerophosphate hydrogel (HG) encapsulating ADSC-Exo (HG@Exo) to manage CNI-ED. The HG exhibits excellent injectability, structural stability, and body temperature sensitivity. In vivo assessment demonstrates that the designed ADSC-Exo-loaded HG hydrogel enhances the retention of ADSC-Exo and displays a slow release. Furthermore, when HG@Exo is applied to the site of nerve injury, erectile function in the bilateral cavernous nerve injury rat model is significantly improved. Thus, our finding indicates that the developed bioactive hydrogel presents a promising strategy for the effective management of CNI-ED.


Assuntos
Exossomos , Masculino , Ratos , Animais , Pênis/lesões , Pênis/inervação , Hidrogéis/uso terapêutico , Ratos Sprague-Dawley , Modelos Animais de Doenças
2.
J Nanobiotechnology ; 20(1): 289, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717234

RESUMO

Inorganic nanoparticles (INPs) have been paid great attention in the field of oncology in recent past years since they have enormous potential in drug delivery, gene delivery, photodynamic therapy (PDT), photothermal therapy (PTT), bio-imaging, driven motion, etc. To overcome the innate limitations of the conventional INPs, such as fast elimination by the immune system, low accumulation in tumor sites, and severe toxicity to the organism, great efforts have recently been made to modify naked INPs, facilitating their clinical application. Taking inspiration from nature, considerable researchers have exploited cell membrane-camouflaged INPs (CMCINPs) by coating various cell membranes onto INPs. CMCINPs naturally inherit the surface adhesive molecules, receptors, and functional proteins from the original cell membrane, making them versatile as the natural cells. In order to give a timely and representative review on this rapidly developing research subject, we highlighted recent advances in CMCINPs with superior unique merits of various INPs and natural cell membranes for cancer therapy applications. The opportunity and obstacles of CMCINPs for clinical translation were also discussed. The review is expected to assist researchers in better eliciting the effect of CMCINPs for the management of tumors and may catalyze breakthroughs in this area.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Fotoquimioterapia , Membrana Celular , Humanos , Hipertermia Induzida/métodos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA