Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Front Bioinform ; 4: 1280971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812660

RESUMO

Radiation exposure poses a significant threat to human health. Emerging research indicates that even low-dose radiation once believed to be safe, may have harmful effects. This perception has spurred a growing interest in investigating the potential risks associated with low-dose radiation exposure across various scenarios. To comprehensively explore the health consequences of low-dose radiation, our study employs a robust statistical framework that examines whether specific groups of genes, belonging to known pathways, exhibit coordinated expression patterns that align with the radiation levels. Notably, our findings reveal the existence of intricate yet consistent signatures that reflect the molecular response to radiation exposure, distinguishing between low-dose and high-dose radiation. Moreover, we leverage a pathway-constrained variational autoencoder to capture the nonlinear interactions within gene expression data. By comparing these two analytical approaches, our study aims to gain valuable insights into the impact of low-dose radiation on gene expression patterns, identify pathways that are differentially affected, and harness the potential of machine learning to uncover hidden activity within biological networks. This comparative analysis contributes to a deeper understanding of the molecular consequences of low-dose radiation exposure.

2.
iScience ; 25(9): 104951, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36093045

RESUMO

We developed a computational approach to find the best intervention to achieve transcription factor (TF) mediated transdifferentiation. We construct probabilistic Boolean networks (PBNs) from single-cell RNA sequencing data of two different cell states to model hematopoietic transcription factors cross-talk. This was achieved by a "sampled network" approach, which enabled us to construct large networks. The interventions to induce transdifferentiation consisted of permanently activating or deactivating each of the TFs and determining the probability mass transfer of steady-state probabilities from the departure to the destination cell type or state. Our findings support the common assumption that TFs that are differentially expressed between the two cell types are the best intervention points to achieve transdifferentiation. TFs whose interventions are found to transdifferentiate progenitor B cells into monocytes include EBF1 down-regulation, CEBPB up-regulation, TCF3 down-regulation, and STAT3 up-regulation.

3.
Bioinformatics ; 37(19): 3212-3219, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33822889

RESUMO

MOTIVATION: When learning to subtype complex disease based on next-generation sequencing data, the amount of available data is often limited. Recent works have tried to leverage data from other domains to design better predictors in the target domain of interest with varying degrees of success. But they are either limited to the cases requiring the outcome label correspondence across domains or cannot leverage the label information at all. Moreover, the existing methods cannot usually benefit from other information available a priori such as gene interaction networks. RESULTS: In this article, we develop a generative optimal Bayesian supervised domain adaptation (OBSDA) model that can integrate RNA sequencing (RNA-Seq) data from different domains along with their labels for improving prediction accuracy in the target domain. Our model can be applied in cases where different domains share the same labels or have different ones. OBSDA is based on a hierarchical Bayesian negative binomial model with parameter factorization, for which the optimal predictor can be derived by marginalization of likelihood over the posterior of the parameters. We first provide an efficient Gibbs sampler for parameter inference in OBSDA. Then, we leverage the gene-gene network prior information and construct an informed and flexible variational family to infer the posterior distributions of model parameters. Comprehensive experiments on real-world RNA-Seq data demonstrate the superior performance of OBSDA, in terms of accuracy in identifying cancer subtypes by utilizing data from different domains. Moreover, we show that by taking advantage of the prior network information we can further improve the performance. AVAILABILITY AND IMPLEMENTATION: The source code for implementations of OBSDA and SI-OBSDA are available at the following link. https://github.com/SHBLK/BSDA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31180899

RESUMO

There is often a limited amount of omics data to design predictive models in biomedicine. Knowing that these omics data come from underlying processes that may share common pathways and disease mechanisms, it may be beneficial for designing a more accurate and reliable predictor in a target domain of interest, where there is a lack of labeled data to leverage available data in relevant source domains. Here, we focus on developing Bayesian transfer learning methods for analyzing next-generation sequencing (NGS) data to help improve predictions in the target domain. We formulate transfer learning in a fully Bayesian framework and define the relatedness by a joint prior distribution of the model parameters of the source and target domains. Defining joint priors acts as a bridge across domains, through which the related knowledge of source data is transferred to the target domain. We focus on RNA-seq discrete count data, which are often overdispersed. To appropriately model them, we consider the Negative Binomial model and propose an Optimal Bayesian Transfer Learning (OBTL) classifier that minimizes the expected classification error in the target domain. We evaluate the performance of the OBTL classifier via both synthetic and cancer data from The Cancer Genome Atlas (TCGA).


Assuntos
Teorema de Bayes , Biologia Computacional/métodos , Aprendizado de Máquina , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Estatísticos , Neoplasias/genética , Neoplasias/metabolismo
5.
BMC Genomics ; 20(Suppl 6): 435, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31189480

RESUMO

BACKGROUND: Single-cell gene expression measurements offer opportunities in deriving mechanistic understanding of complex diseases, including cancer. However, due to the complex regulatory machinery of the cell, gene regulatory network (GRN) model inference based on such data still manifests significant uncertainty. RESULTS: The goal of this paper is to develop optimal classification of single-cell trajectories accounting for potential model uncertainty. Partially-observed Boolean dynamical systems (POBDS) are used for modeling gene regulatory networks observed through noisy gene-expression data. We derive the exact optimal Bayesian classifier (OBC) for binary classification of single-cell trajectories. The application of the OBC becomes impractical for large GRNs, due to computational and memory requirements. To address this, we introduce a particle-based single-cell classification method that is highly scalable for large GRNs with much lower complexity than the optimal solution. CONCLUSION: The performance of the proposed particle-based method is demonstrated through numerical experiments using a POBDS model of the well-known T-cell large granular lymphocyte (T-LGL) leukemia network with noisy time-series gene-expression data.


Assuntos
Algoritmos , Teorema de Bayes , Biologia Computacional/métodos , Redes Reguladoras de Genes , Leucemia Linfocítica Granular Grande/genética , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Modelos Genéticos , Incerteza
6.
BMC Bioinformatics ; 20(Suppl 12): 321, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31216989

RESUMO

BACKGROUND: Missing values frequently arise in modern biomedical studies due to various reasons, including missing tests or complex profiling technologies for different omics measurements. Missing values can complicate the application of clustering algorithms, whose goals are to group points based on some similarity criterion. A common practice for dealing with missing values in the context of clustering is to first impute the missing values, and then apply the clustering algorithm on the completed data. RESULTS: We consider missing values in the context of optimal clustering, which finds an optimal clustering operator with reference to an underlying random labeled point process (RLPP). We show how the missing-value problem fits neatly into the overall framework of optimal clustering by incorporating the missing value mechanism into the random labeled point process and then marginalizing out the missing-value process. In particular, we demonstrate the proposed framework for the Gaussian model with arbitrary covariance structures. Comprehensive experimental studies on both synthetic and real-world RNA-seq data show the superior performance of the proposed optimal clustering with missing values when compared to various clustering approaches. CONCLUSION: Optimal clustering with missing values obviates the need for imputation-based pre-processing of the data, while at the same time possessing smaller clustering errors.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Análise por Conglomerados , Simulação por Computador , Feminino , Perfilação da Expressão Gênica , Humanos , Modelos Teóricos , Distribuição Normal , Probabilidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-29053466

RESUMO

This paper studies classification of gene-expression trajectories coming from two classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to model the dynamics of each class at the state level. Each class has its own BNp, which is partially known based on gene pathways. We employ a Gaussian model at the observation level to show the expression values of the genes given the hidden binary states at each time point. We use expectation maximization (EM) to learn the BNps and the unknown model parameters, derive closed-form updates for the parameters, and propose a learning algorithm. After learning, a plug-in Bayes classifier is used to classify unlabeled trajectories, which can have missing data. Measuring gene expressions at different times yields trajectories only when measurements come from a single cell. In multiple-cell scenarios, the expression values are averages over many cells with possibly different states. Via the central-limit theorem, we propose another model for expression data in multiple-cell scenarios. Simulations demonstrate that single-cell trajectory data can outperform multiple-cell average expression data relative to classification error, especially in high-noise situations. We also consider data generated via a mammalian cell-cycle network, both the wild-type and with a common mutation affecting p27.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Análise de Célula Única/métodos , Algoritmos , Animais , Teorema de Bayes , Humanos , Modelos Genéticos , Modelos Estatísticos , Neoplasias/genética , Neoplasias/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29990066

RESUMO

Gene-expression-based classification and regression are major concerns in translational genomics. If the feature-label distribution is known, then an optimal classifier can be derived. If the predictor-target distribution is known, then an optimal regression function can be derived. In practice, neither is known, data must be employed, and, for small samples, prior knowledge concerning the feature-label or predictor-target distribution can be used in the learning process. Optimal Bayesian classification and optimal Bayesian regression provide optimality under uncertainty. With optimal Bayesian classification (or regression), uncertainty is treated directly on the feature-label (or predictor-target) distribution. The fundamental engineering problem is prior construction. The Regularized Expected Mean Log-Likelihood Prior (REMLP) utilizes pathway information and provides viable priors for the feature-label distribution, assuming that the training data contain labels. In practice, the labels may not be observed. This paper extends the REMLP methodology to a Gaussian mixture model (GMM) when the labels are unknown. Prior construction bundled with prior update via Bayesian sampling results in Monte Carlo approximations to the optimal Bayesian regression function and optimal Bayesian classifier. Simulations demonstrate that the GMM REMLP prior yields better performance than the EM algorithm for small data sets. We apply it to phenotype classification when the prior knowledge consists of colon cancer pathways.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Modelos Estatísticos , Algoritmos , Teorema de Bayes , Neoplasias do Colo/genética , Bases de Dados Genéticas , Humanos , Distribuição Normal
9.
BMC Syst Biol ; 12(Suppl 8): 137, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577732

RESUMO

BACKGROUND: A fundamental problem for translational genomics is to find optimal therapies based on gene regulatory intervention. Dynamic intervention involves a control policy that optimally reduces a cost function based on phenotype by externally altering the state of the network over time. When a gene regulatory network (GRN) model is fully known, the problem is addressed using classical dynamic programming based on the Markov chain associated with the network. When the network is uncertain, a Bayesian framework can be applied, where policy optimality is with respect to both the dynamical objective and the uncertainty, as characterized by a prior distribution. In the presence of uncertainty, it is of great practical interest to develop an experimental design strategy and thereby select experiments that optimally reduce a measure of uncertainty. RESULTS: In this paper, we employ mean objective cost of uncertainty (MOCU), which quantifies uncertainty based on the degree to which uncertainty degrades the operational objective, that being the cost owing to undesirable phenotypes. We assume that a number of conditional probabilities characterizing regulatory relationships among genes are unknown in the Markovian GRN. In sum, there is a prior distribution which can be updated to a posterior distribution by observing a regulatory trajectory, and an optimal control policy, known as an "intrinsically Bayesian robust" (IBR) policy. To obtain a better IBR policy, we select an experiment that minimizes the MOCU remaining after applying its output to the network. At this point, we can either stop and find the resulting IBR policy or proceed to determine more unknown conditional probabilities via regulatory observation and find the IBR policy from the resulting posterior distribution. For sequential experimental design this entire process is iterated. Owing to the computational complexity of experimental design, which requires computation of many potential IBR policies, we implement an approximate method utilizing mean first passage times (MFPTs) - but only in experimental design, the final policy being an IBR policy. CONCLUSIONS: Comprehensive performance analysis based on extensive simulations on synthetic and real GRNs demonstrate the efficacy of the proposed method, including the accuracy and computational advantage of the approximate MFPT-based design.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Cadeias de Markov , Animais , Ciclo Celular/genética , Mutação , Proteína Supressora de Tumor p53/metabolismo , Incerteza
10.
Cancer Inform ; 17: 1176935118790247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093796

RESUMO

Scientists are attempting to use models of ever-increasing complexity, especially in medicine, where gene-based diseases such as cancer require better modeling of cell regulation. Complex models suffer from uncertainty and experiments are needed to reduce this uncertainty. Because experiments can be costly and time-consuming, it is desirable to determine experiments providing the most useful information. If a sequence of experiments is to be performed, experimental design is needed to determine the order. A classical approach is to maximally reduce the overall uncertainty in the model, meaning maximal entropy reduction. A recently proposed method takes into account both model uncertainty and the translational objective, for instance, optimal structural intervention in gene regulatory networks, where the aim is to alter the regulatory logic to maximally reduce the long-run likelihood of being in a cancerous state. The mean objective cost of uncertainty (MOCU) quantifies uncertainty based on the degree to which model uncertainty affects the objective. Experimental design involves choosing the experiment that yields the greatest reduction in MOCU. This article introduces finite-horizon dynamic programming for MOCU-based sequential experimental design and compares it with the greedy approach, which selects one experiment at a time without consideration of the full horizon of experiments. A salient aspect of the article is that it demonstrates the advantage of MOCU-based design over the widely used entropy-based design for both greedy and dynamic programming strategies and investigates the effect of model conditions on the comparative performances.

11.
Cancer Inform ; 17: 1176935118771701, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881253

RESUMO

Features for standard expression microarray and RNA-Seq classification are expression averages over collections of cells. Single cell provides expression measurements for individual cells in a collection of cells from a particular tissue sample. Hence, it can yield feature vectors consisting of higher order and mixed moments. This article demonstrates the advantage of using these expression moments in cancer-related classification. We use synthetic data generated from 2 real networks, the mammalian cell cycle network and a melanoma-related pathway network, and real single-cell data generated via fluorescent protein reporters from 2 cell lines, HT-29 and HCT-116. The networks consist of hidden binary regulatory networks with Gaussian observations. The steady-state distributions of both the original and mutated networks are found, and data are drawn from these for moment-based classification using the mean, variance, skewness, and mixed moments. For the real data, we only observe 1 gene at a time, so that only the mean, variance, and skewness are considered, the analysis being done for 2 genes, EGFR and ERRB2. For the synthetic data, classification improves as we move from just the mean to mean, variance, and skewness and then to these plus the mixed moments. Comparisons are done with 3, 4, or 5 features, using feature selection. Sample size effects are considered. For the real data, we only consider mean, variance, and skewness, with results improving when the higher order moments are used as features.

12.
Cancer Inform ; 17: 1176935118760944, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531471

RESUMO

Cancer is a systems disease involving mutations and altered regulation. This supplement treats cancer research as it pertains to 3 systems issues of an inherently statistical nature: regulatory modeling and information processing, diagnostic classification, and therapeutic intervention and control. Topics of interest include (but are not limited to) multiscale modeling, gene/protein transcriptional regulation, dynamical systems, pharmacokinetic/pharmacodynamic modeling, compensatory regulation, feedback, apoptotic and proliferative control, copy number-expression interaction, integration of different feature types, error estimation, and reproducibility. We are especially interested in how the above issues relate to the extremely high-dimensional data sets and small- to moderate-sized data sets typically involved in cancer research, for instance, their effect on statistical power, inference accuracy, and multiple comparisons.

13.
BMC Syst Biol ; 12(Suppl 3): 23, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29589564

RESUMO

BACKGROUND: Expression-based phenotype classification using either microarray or RNA-Seq measurements suffers from a lack of specificity because pathway timing is not revealed and expressions are averaged across groups of cells. This paper studies expression-based classification under the assumption that single-cell measurements are sampled at a sufficient rate to detect regulatory timing. Thus, observations are expression trajectories. In effect, classification is performed on data generated by an underlying gene regulatory network. RESULTS: Network regulation is modeled via a Boolean network with perturbation, regulation not fully determined owing to inherent biological randomness. The binary assumption is not critical because the resulting Markov chain characterizes expression trajectories. We assume a partially known Gaussian observation model belonging to an uncertainty class of models. We derive the intrinsically Bayesian robust classifier to discriminate between wild-type and mutated networks based on expression trajectories. The classifier minimizes the expected error across the uncertainty class relative to the prior distribution. We test it using a mammalian cell-cycle model, discriminating between the normal network and one in which gene p27 is mutated, thereby producing a cancerous phenotype. Tests examine all model aspects, including trajectory length, perturbation probability, and the hyperparameters governing the prior distribution over the uncertainty class. CONCLUSIONS: Simulations show the rates at which the expected error is diminished by smaller perturbation probability, longer trajectories, and hyperparameters that tighten the prior distribution relative to the unknown true network. For average-expression measurement, methods have been proposed to obtain prior distributions. These should be extended to the more mathematically difficult, but more informative, expression trajectories.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Célula Única , Teorema de Bayes , Modelos Genéticos , Processos Estocásticos
14.
IEEE Trans Biomed Eng ; 65(4): 866-874, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28692960

RESUMO

OBJECTIVE: Tumorigenesis is due to uncontrolled cell division arising from mutations and alterations in the proliferative controls of the cell population. The fight against tumor growth and development has often relied on combination therapy that has been acclaimed as one of the main standards of care in cancer therapeutics and prevention of drug-related resistances. The toxicity of the combinatorial drugs raises a significant concern whenever patients take two or more drugs concurrently at the maximum tolerated dose. A promising solution in tumor treatment involves the administration of the drugs in an alternating or sequential fashion rather than a simultaneous manner. In this paper, we investigate how feasible such an approach is from a mathematical perspective and propose a switched hybrid control systems framework. METHODS: We explore the response of tumor cells dynamics to sequential drugs administration with the aid of a time-dependent switching strategy. A transit compartmentalized model is employed to describe the tumor cells progression to death. RESULTS: The design of the time-based drug switching logic ensures the proliferating tumor cells are repressed. CONCLUSIONS: Simulation results are provided using the tumor growth dynamics with sequential drugs intake to demonstrate the effectiveness of the proposed method in reducing the tumor size. SIGNIFICANCE: This paper is the first attempt to provide a switched hybrid control systems framework on sequential drug administration to biomedical researchers and clinicians.


Assuntos
Antineoplásicos , Modelos Biológicos , Neoplasias , Biologia de Sistemas/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia
15.
Cancer Inform ; 16: 1176935117706888, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579741

RESUMO

As cancer growth and development typically involves multiple genes and pathways, combination therapy has been touted as the standard of care in the treatment of cancer. However, drug toxicity becomes a major concern whenever a patient takes 2 or more drugs simultaneously at the maximum tolerable dosage. A potential solution would be administering the drugs in a sequential or alternating manner rather than concurrently. This study therefore examines the feasibility of such an approach from a switched system control perspective. Particularly, we study how genetic regulatory systems respond to sequential (switched) drug inputs using the time-based switching mechanism. The design of the time-driven drug switching function guarantees the stability of the genetic regulatory system and the repression of the diseased genes. Simulation results using proof-of-concept models and the proliferation and survival pathways with sequential drug inputs show the effectiveness of the proposed approach.

16.
Cancer Inform ; 16: 1176935117710530, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659712

RESUMO

Ranking feature sets for phenotype classification based on gene expression is a challenging issue in cancer bioinformatics. When the number of samples is small, all feature selection algorithms are known to be unreliable, producing significant error, and error estimators suffer from different degrees of imprecision. The problem is compounded by the fact that the accuracy of classification depends on the manner in which the phenomena are transformed into data by the measurement technology. Because next-generation sequencing technologies amount to a nonlinear transformation of the actual gene or RNA concentrations, they can potentially produce less discriminative data relative to the actual gene expression levels. In this study, we compare the performance of ranking feature sets derived from a model of RNA-Seq data with that of a multivariate normal model of gene concentrations using 3 measures: (1) ranking power, (2) length of extensions, and (3) Bayes features. This is the model-based study to examine the effectiveness of reporting lists of small feature sets using RNA-Seq data and the effects of different model parameters and error estimators. The results demonstrate that the general trends of the parameter effects on the ranking power of the underlying gene concentrations are preserved in the RNA-Seq data, whereas the power of finding a good feature set becomes weaker when gene concentrations are transformed by the sequencing machine.

17.
BMC Bioinformatics ; 18(Suppl 14): 552, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297278

RESUMO

BACKGROUND: Phenotypic classification is problematic because small samples are ubiquitous; and, for these, use of prior knowledge is critical. If knowledge concerning the feature-label distribution - for instance, genetic pathways - is available, then it can be used in learning. Optimal Bayesian classification provides optimal classification under model uncertainty. It differs from classical Bayesian methods in which a classification model is assumed and prior distributions are placed on model parameters. With optimal Bayesian classification, uncertainty is treated directly on the feature-label distribution, which assures full utilization of prior knowledge and is guaranteed to outperform classical methods. RESULTS: The salient problem confronting optimal Bayesian classification is prior construction. In this paper, we propose a new prior construction methodology based on a general framework of constraints in the form of conditional probability statements. We call this prior the maximal knowledge-driven information prior (MKDIP). The new constraint framework is more flexible than our previous methods as it naturally handles the potential inconsistency in archived regulatory relationships and conditioning can be augmented by other knowledge, such as population statistics. We also extend the application of prior construction to a multinomial mixture model when labels are unknown, which often occurs in practice. The performance of the proposed methods is examined on two important pathway families, the mammalian cell-cycle and a set of p53-related pathways, and also on a publicly available gene expression dataset of non-small cell lung cancer when combined with the existing prior knowledge on relevant signaling pathways. CONCLUSION: The new proposed general prior construction framework extends the prior construction methodology to a more flexible framework that results in better inference when proper prior knowledge exists. Moreover, the extension of optimal Bayesian classification to multinomial mixtures where data sets are both small and unlabeled, enables superior classifier design using small, unstructured data sets. We have demonstrated the effectiveness of our approach using pathway information and available knowledge of gene regulating functions; however, the underlying theory can be applied to a wide variety of knowledge types, and other applications when there are small samples.


Assuntos
Algoritmos , Animais , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular , Entropia , Humanos , Teoria da Informação , Neoplasias Pulmonares/genética , Mamíferos/metabolismo , Probabilidade , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-26357334

RESUMO

Of major interest to translational genomics is the intervention in gene regulatory networks (GRNs) to affect cell behavior; in particular, to alter pathological phenotypes. Owing to the complexity of GRNs, accurate network inference is practically challenging and GRN models often contain considerable amounts of uncertainty. Considering the cost and time required for conducting biological experiments, it is desirable to have a systematic method for prioritizing potential experiments so that an experiment can be chosen to optimally reduce network uncertainty. Moreover, from a translational perspective it is crucial that GRN uncertainty be quantified and reduced in a manner that pertains to the operational cost that it induces, such as the cost of network intervention. In this work, we utilize the concept of mean objective cost of uncertainty (MOCU) to propose a novel framework for optimal experimental design. In the proposed framework, potential experiments are prioritized based on the MOCU expected to remain after conducting the experiment. Based on this prioritization, one can select an optimal experiment with the largest potential to reduce the pertinent uncertainty present in the current network model. We demonstrate the effectiveness of the proposed method via extensive simulations based on synthetic and real gene regulatory networks.


Assuntos
Redes Reguladoras de Genes/genética , Genômica/métodos , Modelos Genéticos , Animais , Ciclo Celular/genética , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Incerteza
19.
Cancer Inform ; 14(Suppl 5): 21-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26792977

RESUMO

In this paper, we review multiscale modeling for cancer treatment with the incorporation of drug effects from an applied system's pharmacology perspective. Both the classical pharmacology and systems biology are inherently quantitative; however, systems biology focuses more on networks and multi factorial controls over biological processes rather than on drugs and targets in isolation, whereas systems pharmacology has a strong focus on studying drugs with regard to the pharmacokinetic (PK) and pharmacodynamic (PD) relations accompanying drug interactions with multiscale physiology as well as the prediction of dosage-exposure responses and economic potentials of drugs. Thus, it requires multiscale methods to address the need for integrating models from the molecular levels to the cellular, tissue, and organism levels. It is a common belief that tumorigenesis and tumor growth can be best understood and tackled by employing and integrating a multifaceted approach that includes in vivo and in vitro experiments, in silico models, multiscale tumor modeling, continuous/discrete modeling, agent-based modeling, and multiscale modeling with PK/PD drug effect inputs. We provide an example application of multiscale modeling employing stochastic hybrid system for a colon cancer cell line HCT-116 with the application of Lapatinib drug. It is observed that the simulation results are similar to those observed from the setup of the wet-lab experiments at the Translational Genomics Research Institute.

20.
Cancer Inform ; 14(Suppl 5): 33-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26997864

RESUMO

The landscape of translational research has been shifting toward drug combination therapies. Pairing of drugs allows for more types of drug interaction with cells. In order to accurately and comprehensively assess combinational drug efficacy, analytical methods capable of recognizing these alternative reactions will be required to prioritize those drug candidates having better chances of delivering appreciable therapeutic benefits. Traditional efficacy measures are primarily based on the "extent" of drug inhibition, which is the percentage of cells being killed after drug exposure. Here, we introduce a second dimension of evaluation criterion, speed of killing, based on a live cell imaging assay. This dynamic response trajectory approach takes advantage of both "extent" and "speed" information and uncovers synergisms that would otherwise be missed, while also generating hypotheses regarding important mechanistic modes of drug action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA