Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Mol Mutagen ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828778

RESUMO

Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.

2.
Mutat Res Rev Mutat Res ; 792: 108466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643677

RESUMO

Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutagênicos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Testes de Mutagenicidade , Mutação , Mutagênicos/toxicidade , Carcinógenos/toxicidade , Carcinogênese , Medição de Risco
4.
Chem Res Toxicol ; 33(7): 1609-1622, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32529823

RESUMO

Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in multiple organs/tissues of rats by unresolved mechanisms. For this report, evidence for ACN-induced direct/indirect DNA damage and mutagenesis was investigated by assessing the ability of ACN, or its reactive metabolite, 2-cyanoethylene oxide (CEO), to bind to DNA in vitro, to form select DNA adducts [N7-(2'-oxoethyl)guanine, N2,3-ethenoguanine, 1,N6-ethenodeoxyadenosine, and 3,N4-ethenodeoxycytidine] in vitro and/or in vivo, and to perturb the frequency and spectra of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene in rats exposed to ACN in drinking water. Adducts and frequencies and spectra of Hprt mutations were analyzed using published methods. Treatment of DNA from human TK6 lymphoblastoid cells with [2,3-14C]-CEO produced dose-dependent binding of 14C-CEO equivalents, and treatment of DNA from control rat brain/liver with CEO induced dose-related formation of N7-(2'-oxoethyl)guanine. No etheno-DNA adducts were detected in target tissues (brain and forestomach) or nontarget tissues (liver and spleen) in rats exposed to 0, 3, 10, 33, 100, or 300 ppm ACN for up to 105 days or to 0 or 500 ppm ACN for ∼15 months; whereas N7-(2'-oxoethyl)guanine was consistently measured at nonsignificant concentrations near the assay detection limit only in liver of animals exposed to 300 or 500 ppm ACN for ≥2 weeks. Significant dose-related increases in Hprt mutant frequencies occurred in T-lymphocytes from spleens of rats exposed to 33-500 ppm ACN for 4 weeks. Comparisons of "mutagenic potency estimates" for control rats versus rats exposed to 500 ppm ACN for 4 weeks to analogous data from rats/mice treated at a similar age with N-ethyl-N-nitrosourea or 1,3-butadiene suggest that ACN has relatively limited mutagenic effects in rats. Considerable overlap between the sites and types of mutations in ACN-exposed rats and butadiene-exposed rats/mice, but not controls, provides evidence that the carcinogenicity of these epoxide-forming chemicals involves corresponding mutagenic mechanisms.


Assuntos
Acrilonitrila/toxicidade , Carcinógenos/toxicidade , Adutos de DNA/análise , Guanina/análise , Hipoxantina Fosforribosiltransferase/genética , Acrilonitrila/administração & dosagem , Acrilonitrila/metabolismo , Administração Oral , Animais , Carcinógenos/administração & dosagem , Carcinógenos/metabolismo , Células Cultivadas , Adutos de DNA/biossíntese , Relação Dose-Resposta a Droga , Óxido de Etileno/administração & dosagem , Óxido de Etileno/análogos & derivados , Óxido de Etileno/metabolismo , Óxido de Etileno/toxicidade , Feminino , Guanina/análogos & derivados , Guanina/biossíntese , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Masculino , Camundongos , Ratos , Ratos Endogâmicos F344
5.
Chem Res Toxicol ; 33(7): 1623-1632, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32529832

RESUMO

Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in the mouse via unresolved mechanisms. For this report, complementary and previously described methods were used to assess in vivo genotoxicity and/or mutagenicity of ACN in several mouse models, including (i) female mice devoid of cytochrome P450 2E1 (CYP2E1), which yields the epoxide intermediate cyanoethylene oxide (CEO), (ii) male lacZ transgenic mice, and (iii) female (wild-type) B6C3F1 mice. Exposures of wild-type mice and CYP2E1-null mice to ACN at 0, 2.5 (wild-type mice only), 10, 20, or 60 (CYP2E1-null mice only) mg/kg body weight by gavage for 6 weeks (5 days/week) produced no elevations in the frequencies of micronucleated erythrocytes, but induced significant dose-dependent increases in DNA damage, detected by the alkaline (pH >13) Comet assay, in one target tissue (forestomach) and one nontarget tissue (liver) of wild-type mice only. ACN exposures by gavage also caused significant dose-related elevations in the frequencies of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) reporter gene of T-lymphocytes from spleens of wild-type mice; however, Hprt mutant frequencies were significantly increased in CYP2E1-null mice only at a high dose of ACN (60 mg/kg) that is lethal to wild-type mice. Similarly, drinking water exposures of lacZ transgenic mice to 0, 100, 500, or 750 ppm ACN for 4 weeks caused significant dose-dependent elevations in Hprt mutant frequencies in splenic T-cells; however, these ACN exposures did not increase the frequency of lacZ transgene mutations above spontaneous background levels in several tissues from the same animals. Together, the Comet assay and Hprt mutant frequency data from these studies indicate that oxidative metabolism of ACN by CYP2E1 to CEO is central to the induction of the majority of DNA damage and mutations in ACN-exposed mice, but ACN itself also may contribute to the carcinogenic modes of action via mechanisms involving direct and/or indirect DNA reactivity.


Assuntos
Acrilonitrila/toxicidade , Carcinógenos/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Hipoxantina Fosforribosiltransferase/metabolismo , Acrilonitrila/administração & dosagem , Acrilonitrila/metabolismo , Administração Oral , Animais , Biomarcadores/análise , Carcinógenos/administração & dosagem , Carcinógenos/metabolismo , Citocromo P-450 CYP2E1/análise , Citocromo P-450 CYP2E1/genética , Dano ao DNA , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Hipoxantina Fosforribosiltransferase/análise , Hipoxantina Fosforribosiltransferase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Testes de Mutagenicidade , Mutação , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
6.
Environ Mol Mutagen ; 61(1): 55-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743493

RESUMO

In utero development represents a sensitive window for the induction of mutations. These mutations may subsequently expand clonally to populate entire organs or anatomical structures. Although not all adverse mutations will affect tissue structure or function, there is growing evidence that clonally expanded genetic mosaics contribute to various monogenic and complex diseases, including cancer. We posit that genetic mosaicism is an underestimated potential health problem that is not fully addressed in the current regulatory genotoxicity testing paradigm. Genotoxicity testing focuses exclusively on adult exposures and thus may not capture the complexity of genetic mosaicisms that contribute to human disease. Numerous studies have shown that conversion of genetic damage into mutations during early developmental exposures can result in much higher mutation burdens than equivalent exposures in adults in certain tissues. Therefore, we assert that analysis of genetic effects caused by in utero exposures should be considered in the current regulatory testing paradigm, which is possible by harmonization with current reproductive/developmental toxicology testing strategies. This is particularly important given the recent proposed paradigm change from simple hazard identification to quantitative mutagenicity assessment. Recent developments in sequencing technologies offer practical tools to detect mutations in any tissue or species. In addition to mutation frequency and spectrum, these technologies offer the opportunity to characterize the extent of genetic mosaicism following exposure to mutagens. Such integration of new methods with existing toxicology guideline studies offers the genetic toxicology community a way to modernize their testing paradigm and to improve risk assessment for vulnerable populations. Environ. Mol. Mutagen. 61:55-65, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Exposição Materna/efeitos adversos , Mosaicismo/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Exposição Paterna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Taxa de Mutação , Gravidez
7.
Environ Mol Mutagen ; 61(1): 34-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600846

RESUMO

Mutations induced in somatic cells and germ cells are responsible for a variety of human diseases, and mutation per se has been considered an adverse health concern since the early part of the 20th Century. Although in vitro and in vivo somatic cell mutation data are most commonly used by regulatory agencies for hazard identification, that is, determining whether or not a substance is a potential mutagen and carcinogen, quantitative mutagenicity dose-response data are being used increasingly for risk assessments. Efforts are currently underway to both improve the measurement of mutations and to refine the computational methods used for evaluating mutation data. We recommend continuing the development of these approaches with the objective of establishing consensus regarding the value of including the quantitative analysis of mutation per se as a required endpoint for comprehensive assessments of toxicological risk. Environ. Mol. Mutagen. 61:34-41, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Animais , Carcinógenos/toxicidade , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/efeitos dos fármacos , Medição de Risco
8.
Artigo em Inglês | MEDLINE | ID: mdl-31699340

RESUMO

The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.


Assuntos
Testes de Mutagenicidade/métodos , Animais , Animais Geneticamente Modificados , Biotransformação , Dano ao DNA , Genes Reporter , Vetores Genéticos/genética , Guias como Assunto , Camundongos , Camundongos Endogâmicos , Testes de Mutagenicidade/instrumentação , Testes de Mutagenicidade/normas , Mutagênicos/farmacocinética , Mutagênicos/toxicidade , Mutação , Ratos , Ratos Endogâmicos F344 , Padrões de Referência , Reprodutibilidade dos Testes , Projetos de Pesquisa , Transgenes , Estudos de Validação como Assunto
9.
Artigo em Inglês | MEDLINE | ID: mdl-30744809

RESUMO

A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals.


Assuntos
Medula Óssea/efeitos dos fármacos , Colo/efeitos dos fármacos , Ensaio Cometa/métodos , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação , Estômago/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Dano ao DNA , Feminino , Masculino , Camundongos , Testes para Micronúcleos , Ratos
10.
Mutagenesis ; 32(2): 299-312, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096451

RESUMO

The frequency of stable DNA adducts in a target tissue can be used to assess biologically effective dose; however, the utility of the metric in a risk assessment context depends on the likelihood that the DNA damage will be manifested as mutation. Previously, we employed the Muta™Mouse system to examine the induction of lacZ mutants and DNA adducts following exposure to the well-studied mutagenic carcinogen 3-nitrobenzanthrone (3-NBA). In this follow-up work, we examined the empirical relationships between total adduct frequency and mutant frequency (MF) in tissues and cultured cells following acute 3-NBA exposure. The results show a significant induction of DNA damage and lacZ mutants in liver, colon and bone marrow, as well as FE1 pulmonary epithelial cells. In contrast, lung and small intestine samples had low, but significantly elevated adduct levels, with no significant increases in lacZ MF. Additional analyses showed a significant relationship between the mutagenic efficiency of total adducts, measured as the slope of the relationships between MF and total adduct frequency, and tissue-specific mitotic index (MI). The lack of mutation response in lung, in contrast to the high in vitro MF in FE-1 lung cells, is likely related to the 100-fold difference in MI. The lack of small intestine mutagenic response may be related to limited metabolic capacity, differences in DNA repair, and /or chemically induced apoptosis that has been observed for other potent mutagens. The results indicate that interpretation of adduct frequency values in a risk assessment context can be improved by considering the MI of the target tissue; however, more generalised interpretation is hampered by tissue-specific variations in metabolic capacity and damage processing. The work provides a proof of principle regarding the use of the Muta™Mouse system to critically examine the health risks associated with tissue-specific adduct loads.


Assuntos
Benzo(a)Antracenos/toxicidade , Adutos de DNA/metabolismo , Reparo do DNA , Óperon Lac/efeitos dos fármacos , Mutação , Animais , Adutos de DNA/análise , Dano ao DNA , Óperon Lac/genética , Masculino , Camundongos , Testes de Mutagenicidade , Especificidade de Órgãos , Transgenes
11.
Environ Mol Mutagen ; 58(5): 264-283, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27650663

RESUMO

For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic or germ cells. The outline of a flexible approach and associated considerations are presented in a series of nine steps, some of which can occur in parallel, which was developed through a collaborative effort by leading genetic toxicologists from academia, government, and industry through the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC). The ultimate goal is to provide quantitative data to model the potential risk levels of substances, which induce genomic damage contributing to human adverse health outcomes. Any good risk assessment begins with asking the appropriate risk management questions in a planning and scoping effort. This step sets up the problem to be addressed (e.g., broadly, does genomic damage need to be addressed, and if so, how to proceed). The next two steps assemble what is known about the problem by building a knowledge base about the substance of concern and developing a rational biological argument for why testing for genomic damage is needed or not. By focusing on the risk management problem and potential genomic damage of concern, the next step of assay(s) selection takes place. The work-up of the problem during the earlier steps provides the insight to which assays would most likely produce the most meaningful data. This discussion does not detail the wide range of genomic damage tests available, but points to types of testing systems that can be very useful. Once the assays are performed and analyzed, the relevant data sets are selected for modeling potential risk. From this point on, the data are evaluated and modeled as they are for any other toxicology endpoint. Any observed genomic damage/effects (or genetic event(s)) can be modeled via a dose-response analysis and determination of an estimated PoD. When a quantitative risk analysis is needed for decision making, a parallel exposure assessment effort is performed (exposure assessment is not detailed here as this is not the focus of this discussion; guidelines for this assessment exist elsewhere). Then the PoD for genomic damage is used with the exposure information to develop risk estimations (e.g., using reference dose (RfD), margin of exposure (MOE) approaches) in a risk characterization and presented to risk managers for informing decision making. This approach is applicable now for incorporating genomic damage results into the decision-making process for assessing potential adverse outcomes in chemically exposed humans and is consistent with the ILSI HESI Risk Assessment in the 21st Century (RISK21) roadmap. This applies to any substance to which humans are exposed, including pharmaceuticals, agricultural products, food additives, and other chemicals. It is time for regulatory bodies to incorporate the broader knowledge and insights provided by genomic damage results into the assessments of risk to more fully understand the potential of adverse outcomes in chemically exposed humans, thus improving the assessment of risk due to genomic damage. The historical use of genomic damage data as a yes/no gateway for possible cancer risk has been too narrowly focused in risk assessment. The recent advances in assaying for and understanding genomic damage, including eventually epigenetic alterations, obviously add a greater wealth of information for determining potential risk to humans. Regulatory bodies need to embrace this paradigm shift from hazard identification to quantitative analysis and to incorporate the wider range of genomic damage in their assessments of risk to humans. The quantitative analyses and methodologies discussed here can be readily applied to genomic damage testing results now. Indeed, with the passage of the recent update to the Toxic Substances Control Act (TSCA) in the US, the new generation testing strategy for genomic damage described here provides a regulatory agency (here the US Environmental Protection Agency (EPA), but suitable for others) a golden opportunity to reexamine the way it addresses risk-based genomic damage testing (including hazard identification and exposure). Environ. Mol. Mutagen. 58:264-283, 2017. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.


Assuntos
Genômica/métodos , Testes de Mutagenicidade/tendências , Animais , Saúde Ambiental , Humanos , Modelos Teóricos , Testes de Mutagenicidade/normas , Mutagênicos/toxicidade , Medição de Risco
12.
Mutat Res ; 752(1): 6-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22935230

RESUMO

Next-generation sequencing technologies can now be used to directly measure heritable de novo DNA sequence mutations in humans. However, these techniques have not been used to examine environmental factors that induce such mutations and their associated diseases. To address this issue, a working group on environmentally induced germline mutation analysis (ENIGMA) met in October 2011 to propose the necessary foundational studies, which include sequencing of parent-offspring trios from highly exposed human populations, and controlled dose-response experiments in animals. These studies will establish background levels of variability in germline mutation rates and identify environmental agents that influence these rates and heritable disease. Guidance for the types of exposures to examine come from rodent studies that have identified agents such as cancer chemotherapeutic drugs, ionizing radiation, cigarette smoke, and air pollution as germ-cell mutagens. Research is urgently needed to establish the health consequences of parental exposures on subsequent generations.


Assuntos
Interação Gene-Ambiente , Doenças Genéticas Inatas/genética , Genômica , Animais , Poluentes Ambientais/toxicidade , Mutação em Linhagem Germinativa , Humanos , Efeitos da Radiação , Produtos do Tabaco/efeitos adversos
13.
Mutat Res ; 723(2): 84-6, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21514400

RESUMO

The Mouse Lymphoma Expert Workgroup of the International Workshop for Genotoxicity Tests (IWGT) met in Basel, Switzerland in August of 2009. The Workgroup (WG) was tasked with discussing the appropriate top concentration for non-pharmaceuticals that would be required for the conduct of the mouse lymphoma assay (MLA) when sufficient cytotoxicity [to between 10 and 20% relative total growth (RTG)] has not been attained. The WG approached this task by (1) enumerating the various regulatory decisions/use for MLA data, (2) discussing the appropriate assays to which MLA data and assay performance should be compared and (3) discussing all the proposals put forth concerning the top concentration for non-pharmaceuticals. In addition, one of the members presented a summary of a re-evaluation of the National Toxicology Program MLA data using the IWGT harmonized guidance that was underway as a separate (non IWGT) activity, being conducted by two members of the Expert WG. The WG was asked to vote on each of the various proposals for top concentration for when cytotoxicity is not concentration limiting. While there was general agreement that the top concentration for non-pharmaceuticals should be re-evaluated and likely lowered from the current recommended levels, there was no agreement on a specific new recommendation.


Assuntos
Testes de Mutagenicidade/normas , Animais , Linfoma , Camundongos , Autonomia Profissional
14.
Environ Mol Mutagen ; 52(3): 205-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20740635

RESUMO

The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow-up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans.


Assuntos
Cooperação Internacional , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Animais , Conferências de Consenso como Assunto , Humanos , Testes de Mutagenicidade/tendências , Medição de Risco , Tecnologia
15.
Environ Mol Mutagen ; 52(4): 331-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20963790

RESUMO

It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation spectrum in the cII gene of Printex 90 exposed cells. Cells exposed to CB have a substantially different mutation spectrum in the cII gene compared with vehicle exposed controls. The mutation spectra differ both in the positions (P < 0.0001) and types of the mutations (P < 0.0001). Exposure to Printex 90 increased the number of single base deletions by 2.3-fold and larger deletions by 1.9-fold. Most single base deletions were within two repetitive sequences in cII, but the large deletions were not. The mechanism behind the large deletions is not yet known. The largest increases in base substitutions were observed in G:C→T:A, G:C→C:G, and A:T→T:A transversion mutations; this is in keeping with a genetic finger print of ROS and is further substantiated by the observations that Printex 90 generates ROS and oxidatively damaged DNA.


Assuntos
Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação , Nanopartículas/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Fuligem/toxicidade , Animais , Linhagem Celular , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
Environ Mol Mutagen ; 51(4): 330-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19953605

RESUMO

We have developed an in vitro mutation assay using primary hepatocytes from the transgenic MutaMouse. Primary hepatocytes were isolated using a two-step perfusion method with purification by Percoll, cultured, and treated with benzo[a]pyrene (BaP), 2-amino-1-methyl-6-phenyl- imidazo[4,5-b]pyridine (PhIP), 3-nitrobenzoanthrone (3-NBA), and cigarette smoke condensate (CSC). The mean lacZ mutant frequency (MF) for the solvent control was approximately twofold greater than the spontaneous MF observed in liver tissue. A concentration-dependent increase in MF (up to 3.7-fold above control) was observed following exposure to BaP. Fourfold and twofold increases in mutant frequency were observed for 3-NBA and PhIP exposures, respectively, without the addition of any exogenous metabolic activation. A slight but statistically significant increase in lacZ MF was observed for CSC, but only at the lowest concentration. This is the first report demonstrating that mutations can be detected in cultured primary hepatocytes from MutaMouse. The preliminary results presented suggest that the MutaMouse primary hepatocyte mutagenicity assay can be used as a cost-effective tool for screening of environmental mutagens and therapeutic products.


Assuntos
Hepatócitos/efeitos dos fármacos , Óperon Lac , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Mutação , Aminopiridinas/toxicidade , Animais , Benzo(a)pireno/toxicidade , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Imidazóis/toxicidade , Camundongos , Camundongos Mutantes
17.
Chem Res Toxicol ; 22(8): 1406-14, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19947653

RESUMO

While the prevalence of tobacco use has decreased in Canada over the past decade, that of marijuana use has increased, particularly among youth. However, the risks of adverse health effects from marijuana smoke exposure, specifically as compared to tobacco, are currently not well understood. The objectives of this study were to evaluate the relative ability of matched marijuana and tobacco condensates to induce (geno)toxic responses in three in vitro test systems. This study provides comparative data for matched sidestream and mainstream condensates, as well as condensates prepared under both a standard and an extreme smoking regime designed to mimic marijuana smoking habits. The results indicate that tobacco and marijuana smoke differ substantially in terms of their cytotoxicity, Salmonella mutagenicity, and ability to induce chromosomal damage (i.e., micronucleus formation). Specifically, the marijuana condensates were all found to be more cytotoxic and more mutagenic in the presence of S9 than the matched tobacco condensates. In contrast, the tobacco condensates appeared to induce cytogenetic damage in a concentration-dependent manner, whereas the matched marijuana condensates did not. In addition, when corrected for total particulate matter yield, little difference was observed in the mutagenic activity of samples smoked under the extreme vs the standard regime for both tobacco and marijuana condensates.


Assuntos
Fumaça/análise , Fumaça/prevenção & controle , Adolescente , Humanos
18.
Mutagenesis ; 24(4): 341-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19535363

RESUMO

Since the publication of the International Programme on Chemical Safety (IPCS) Harmonized Scheme for Mutagenicity Testing, there have been a number of publications addressing test strategies for mutagenicity. Safety assessments of substances with regard to genotoxicity are generally based on a combination of tests to assess effects on three major end points of genetic damage associated with human disease: gene mutation, clastogenicity and aneuploidy. It is now clear from the results of international collaborative studies and the large databases that are currently available for the assays evaluated that no single assay can detect all genotoxic substances. The World Health Organization therefore decided to update the IPCS Harmonized Scheme for Mutagenicity Testing as part of the IPCS project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals. The approach presented in this paper focuses on the identification of mutagens and genotoxic carcinogens. Selection of appropriate in vitro and in vivo tests as well as a strategy for germ cell testing are described.


Assuntos
Testes de Mutagenicidade/métodos , Medição de Risco , Animais , Carcinógenos , Dano ao DNA , Previsões , Células Germinativas/efeitos dos fármacos , Humanos , Cooperação Internacional , Legislação como Assunto , Mutagênicos , Organização Mundial da Saúde
19.
Inhal Toxicol ; 21(1): 78-85, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18925475

RESUMO

Tobacco smoking is associated with cardiovascular pathology. However, the molecular mechanisms of tobacco smoke exposure that lead to initiation or exacerbation of cardiovascular disease are unclear. In this study, the effects of mainstream tobacco smoke (MTS) on global transcription in the heart were investigated. Male C57B1/CBA mice were exposed to MTS from 2 cigarettes daily, 5 days/wk for 6 or 12 wk. Mice were sacrificed immediately, or 6 wk following the last cigarette. High-density DNA microarrays were used to characterize global gene expression changes in whole heart. Fifteen genes were significantly differentially expressed following exposure to MTS. Among these genes, cytochrome P-450 1A1 (Cyp1A1) was upregulated by 12-fold, and Serpine-1 (plasminogen activator inhibitor-1, PAI-1) was downregulated by 1.7-fold. Concomitant increase in Cyp1A1 protein levels and decrease in total and active PAI-1 protein was observed in tissue extracts by Western blot assay and enzyme-linked immunosorbent assay (ELISA), respectively. Observed changes were transient and were partially reversed during break periods. Thus, gene expression profiling of heart tissue revealed a novel cardiovascular mechanism operating in response to MTS. Our results suggest a potential role for PAI-1 in MTS-induced cardiovascular pathology.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Coração/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Toxicogenética/métodos , Animais , Western Blotting , Doenças Cardiovasculares/etiologia , Citocromo P-450 CYP1A1/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Regulação para Baixo/genética , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Coração/anatomia & histologia , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Inibidor 1 de Ativador de Plasminogênio/efeitos adversos , Poluição por Fumaça de Tabaco/análise , Regulação para Cima
20.
Environ Mol Mutagen ; 49(8): 602-13, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18613036

RESUMO

3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures.


Assuntos
Benzo(a)Antracenos/toxicidade , Biotransformação , Mutagênicos/toxicidade , Acetiltransferases/metabolismo , Animais , Benzo(a)Antracenos/farmacocinética , Cromatografia Líquida de Alta Pressão , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Camundongos Mutantes , Testes de Mutagenicidade , Mutagênicos/farmacocinética , Nitrorredutases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA