Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cryobiology ; 91: 104-114, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31593692

RESUMO

Cryopreservation is the universal technology used to enable long-term storage and continuous availability of cell stocks and tissues for regenerative medicine demands. The main components of standard freezing media are dimethyl sulfoxide (hereinafter Me2SO) and fetal bovine serum (FBS). However, for manufacturing of cells and tissue-engineered products in accordance with the principles of Good Manufacturing Practice (GMP), current considerations in regenerative medicine suggest development of Me2SO- and serum-free biopreservation strategies due to safety concerns over Me2SO-induced side effects and immunogenicity of animal serum. In this work, the effect of electroporation-assisted pre-freeze delivery of sucrose, trehalose and raffinose into human umbilical cord mesenchymal stem cells (hUCMSCs) on their post-thaw survival was investigated. The optimal strength of electric field at 8 pulses with 100 µs duration and 1 Hz pulse repetition frequency was determined to be 1.5 kV/cm from permeabilization (propidium iodide uptake) vs. cell recovery data (resazurin reduction assay). Using sugars as sole cryoprotectants with electroporation, concentration-dependent increase in cell survival was observed. Irrespective of sugar type, the highest cell survival (up to 80%) was achieved at 400 mM extracellular concentration and electroporation. Cell freezing without electroporation yielded significantly lower survival rates. In the optimal scenario, cells were able to attach 24 h after thawing demonstrating characteristic shape and sugar-loaded vacuoles. Application of 10% Me2SO/90% FBS as a positive control provided cell survival exceeding 90%. Next, high glass transition temperatures determined for optimal concentrations of sugars by differential scanning calorimetry (DSC) suggest the possibility to store samples at -80 °C. In summary, using electroporation to incorporate cryoprotective sugars into cells is an effective strategy towards Me2SO- and serum-free cryopreservation and may pave the way for further progress in establishing clinically safe biopreservation strategies for efficient long-term biobanking of cells.


Assuntos
Criopreservação/métodos , Crioprotetores/metabolismo , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Eletroporação/métodos , Células-Tronco Mesenquimais/citologia , Animais , Bancos de Espécimes Biológicos , Sobrevivência Celular/efeitos dos fármacos , Congelamento , Humanos , Rafinose/metabolismo , Rafinose/farmacologia , Sacarose/metabolismo , Sacarose/farmacologia , Engenharia Tecidual , Trealose/metabolismo , Trealose/farmacologia , Cordão Umbilical/citologia
2.
Molecules ; 19(10): 16707-23, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25325155

RESUMO

Previously, we have synthesized several series of compounds based on the 5-aryl-2-aminoimidazole scaffold, which showed a preventive activity against microbial biofilms. We here studied the cytotoxicity of the most active compounds of each series. First, the cytostatic activity was investigated against a number of tumor cell lines (L1210, CEM and HeLa). A subset of monosubstituted 5-aryl-2-aminoimidazoles showed a moderate safety window, with therapeutic indices (TIs) ranging between 3 and 20. Whereas introduction of a (cyclo-)alkyl chain at the N1-position strongly reduced the TI, introduction of a (cyclo-)alkyl chain or a triazole moiety at the 2N-position increased the TI up to 370. Since a promising application of preventive anti-biofilm agents is their use in anti-biofilm coatings for orthopedic implants, their effects on cell viability and functional behavior of human osteoblasts and bone marrow derived mesenchymal stem cells were tested. The 2N-substituted 5-aryl-2-aminoimidazoles consistently showed the lowest toxicity and allowed survival of the bone cells for up to 4 weeks. Moreover they did not negatively affect the osteogenic differentiation potential of the bone cells. Finally, we examined the effect of the compounds on the survival of Caenorhabditis elegans, which confirmed the higher safety window of 2N-substituted 5-aryl-2-aminoimidazoles.


Assuntos
Biofilmes/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Células Eucarióticas/citologia , Imidazóis/efeitos adversos , Osteoblastos/citologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citostáticos/farmacologia , Células Eucarióticas/efeitos dos fármacos , Humanos , Imidazóis/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Osteoblastos/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA