Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
J Biol Chem ; 276(27): 25262-72, 2001 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-11335731

RESUMO

Reduction of mitochondrial cardiolipin (CL) levels has been postulated to compromise directly the function of several essential enzymes and processes of the mitochondria. There is limited genetic evidence for the critical roles with which CL and its precursor phosphatidylglycerol (PG) have been associated. A null allele of the PGS1 gene from Saccharomyces cerevisiae, which encodes the enzyme responsible for the synthesis of the CL precursor PG phosphate, was created in a yeast strain in which PGS1 expression is exogenously regulated by doxycycline. The addition of increasing concentrations of doxycycline to the growth medium causes a proportional decrease to undetectable levels of PGS1 transcript, PG phosphate synthase activity, and PG plus CL. The doubling time of this strain with increasing doxycycline increases to senescence in non-fermentable carbon sources or at high temperatures, conditions that do not support growth of the pgs1Delta strain. Doxycycline addition also causes mitochondrial abnormalities as observed by fluorescence microscopy. Products of four mitochondrial encoded genes (COX1, COX2, COX3, and COB) and one nuclear encoded gene (COX4) associated with the mitochondrial inner membrane are not present when PGS1 expression is fully repressed. No translation of these proteins can be detected in cells lacking the PGS1 gene product, although transcription and splicing appear unaffected. Protein import of other nuclear encoded proteins remains unaffected. The remaining proteins encoded by mitochondrial DNA are expressed and translated normally. Thus, the molecular basis for the lack of mitochondrial function in pgs1Delta cells is the failure to translate gene products essential to the electron transport chain.


Assuntos
Ânions/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Biossíntese de Proteínas , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Laranja de Acridina/análogos & derivados , Sequência de Bases , Corantes , Ciclo-Oxigenase 1 , Doxiciclina/farmacologia , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Glucose/metabolismo , Isoenzimas/genética , Proteínas de Membrana/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plasmídeos , Prostaglandina-Endoperóxido Sintases/genética , ATPases Translocadoras de Prótons/isolamento & purificação , ATPases Translocadoras de Prótons/metabolismo , Compostos de Piridínio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Temperatura , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia
3.
Arch Microbiol ; 172(5): 295-302, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10550471

RESUMO

Synthesis of the high-affinity K(+)-translocating Kdp-ATPase of Escherichia coli, encoded by the kdpFABC operon, is regulated by the membrane-bound sensor kinase KdpD and the soluble response regulator KdpE. K(+) limitation or a sudden increase in osmolarity induces the expression of kdpFABC. Due to the importance of K(+) to maintain turgor, it has been proposed that KdpD is a turgor sensor. Although the primary stimulus that KdpD senses is unknown, alterations in membrane strain or the interaction between KdpD and membrane components might be good candidates. Here, we report a study of the influence of the membrane phospholipid composition on the function of KdpD in vivo and in vitro using various E. coli mutants defective in phospholipid biosynthesis. Surprisingly, neither the lack of the major E. coli phospholipid phosphatidylethanolamine nor the drastic reduction of the phosphatidylglycerol/cardiolipin content influenced induction of kdpFABC expression significantly. However, in vitro reconstitution experiments with synthetic phospholipids clearly demonstrated that KdpD kinase activity is dependent on negatively charged phospholipids, whereas the structure of the phospholipids plays a minor role. These results indicate that electrostatic interactions are important for the activity of KdpD.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fosfolipídeos/química , Proteínas Quinases/metabolismo , Adenosina Trifosfatases/biossíntese , Proteínas de Bactérias/isolamento & purificação , Proteínas de Transporte/biossíntese , Indução Enzimática , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Fosforilação , Proteínas Quinases/isolamento & purificação , Proteolipídeos/metabolismo , Eletricidade Estática
4.
DNA Cell Biol ; 16(3): 281-9, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9115637

RESUMO

Phosphatidic acid (PA) is a phospholipid involved in signal transduction and in glycerolipid biosynthesis. CDP-diacylglycerol synthase (CDS) or CTP:phosphatidate cytidylyltransferase (EC 2.7.7.41) catalyzes the conversion of PA to CDP-diacylglycerol (CDP-DAG), an important precursor for the synthesis of phosphatidylinositol, phosphatidylglycerol, and cardiolipin. We describe in this study the isolation and characterization of a human cDNA clone that encodes amino acid sequences homologous to Escherichia coli, yeast, and Drosophila CDS sequences. Expression of this human cDNA under the control of a GAL1 promoter in a null cds1 mutant yeast strain complements its growth defect and produces CDS activity when induced with galactose. Transfection of this cDNA into mammalian cells leads to increased CDS activity in cell-free extracts using an in vitro assay that measures the conversion of [alpha-32P]CTP to [32P]CDP-DAG. This increase in CDS activity also leads to increased secretion of tumor necrosis factor-alpha and interleukin-6 from endothelial ECV304 cells upon stimulation with interleukin-1beta, suggesting that CDS overexpression may amplify cellular signaling responses from cytokines.


Assuntos
DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/isolamento & purificação , Diacilglicerol Colinofosfotransferase/isolamento & purificação , Diacilglicerol Colinofosfotransferase/metabolismo , Drosophila , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência
5.
J Biol Chem ; 266(15): 9983-6, 1991 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-2033085

RESUMO

It has been postulated that the N-acyl fatty acid attached to the amino terminus of the major Escherichia coli lipoprotein is derived from the fatty acid at the 1-position of phosphatidylethanolamine (PtdEtn) (Jackowski, S., and Rock, C.O. (1986) J. Biol. Chem. 261, 11328-11333). To ascertain the role of PtdEtn in the conversion of apolipoprotein to the mature lipoprotein, the lipoprotein from E. coli strain AH930 (pss::kan) containing a null mutation in the phosphatidylserine synthase gene (pss) was studied. Pulse labeling with [35S]methionine for 30 s or 5 min revealed the formation of mature lipoprotein in both wild-type (W3110) and mutant (AH930) cells. [3H]Palmitate-labeled lipoproteins from both the mutant and wild-type cells were found to contain nearly identical amounts of alkali-resistant (amide-linked, 41-42%) and alkali-labile (ester-linked, 58-59%) fatty acids. Edman degradation and dansylation of the immuno-affinity-purified [35S]cysteine-labeled lipoprotein showed that the NH2 terminus of the lipoprotein in the mutant was blocked as in the wild type. In vitro assay of apolipoprotein N-acyltransferase using membranes either from the mutant or the wild-type strain as the source of both the enzyme and the acyl donor revealed that both membranes were equally active in the conversion of [35S]methionine-labeled apolipoprotein to lipoprotein. These data strongly suggest that PtdEtn is not essential for the N-acylation of apolipoprotein to form lipoprotein, and other major phospholipids such as phosphatidylglycerol and cardiolipin can serve as the donor of fatty acid in the N-acylation of apolipoprotein.


Assuntos
Apolipoproteínas/metabolismo , Escherichia coli/metabolismo , Fosfatidiletanolaminas/química , Acilação , Eletroforese em Gel de Poliacrilamida , Cinética , Fosfatidilserinas/genética
6.
J Biol Chem ; 265(7): 4111-5, 1990 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-2406271

RESUMO

Phosphatidylserine decarboxylase from Escherichia coli uses a pyruvate group as the enzyme cofactor (Satre, M., and Kennedy, E. P. (1978) J. Biol. Chem. 253, 479-483). Comparison of the DNA sequence of the psd gene with the partial amino acid sequence of the mature gene product suggests that the two nonidentical subunits of the mature enzyme are formed by cleavage of a proenzyme resulting in the conversion of Ser-254 to an amino-terminal pyruvate residue (Li, Q.-X., and Dowhan, W. (1988) J. Biol. Chem. 263, 11516-11522). The cleavage of the wild-type proenzyme occurs rapidly with a half-time on the order of 2 min. When Ser-254 is changed to cysteine (S254C), threonine (S254T), or alanine (S254A) by site-directed mutagenesis, the rate of processing of the proenzyme and the production of the functional enzyme are drastically affected. Proenzymes with S254C or S254T are cleaved with a half-time of around 2-4 h while the S254A proenzyme does not undergo processing. The reduced processing rate for the mutant proenzymes is consistent with less of the functional enzyme being made. Mutants encoding the S254C and S254T protein produce 16 and 2%, respectively, of the activity of the wild-type allele but can still complement a temperature-sensitive mutant in the psd locus. There is no detectable activity or complementation observed with the S254A protein. These results are consistent with the hydroxyl group of Ser-254 playing a critical role in the cleavage of the peptide bond between Gly-253 and Ser-254 of the prophosphatidylserine decarboxylase and support the mechanism proposed by Snell and coworkers (Recsei and Snell (1984) Annul Rev. Biochem. 53, 357-387) for the formation of the prosthetic group of pyruvate-dependent decarboxylases.


Assuntos
Carboxiliases/metabolismo , Escherichia coli/enzimologia , Carboxiliases/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Peso Molecular , Mutação , Plasmídeos , Piruvatos , Mapeamento por Restrição
7.
Cell ; 60(2): 271-80, 1990 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-2153463

RESUMO

The ATPase activity of SecA is stimulated by E. coli plasma membrane vesicles bearing SecY protein and a precursor protein such as proOmpA. This activity is termed "translocation ATPase". Liposomes alone can also stimulate SecA ATPase, but membrane proteins block this stimulation in native inner membranes. We define the stimulation of SecA ATPase by lipid as "SecA/lipid ATPase". SecA/lipid ATPase, translocation ATPase, and translocation into inner membrane vesicles require acidic phospholipids, suggesting an underlying unity of mechanism. ProOmpA and ATP stabilize liposome-bound SecA. Full SecA/lipid ATPase activity and stability are also seen when a mixture of a leader peptide and either OmpA or maltose binding protein (MBP) are added instead of proOmpA, while neither the leader peptide alone nor OmpA or MBP suffice. Cytosolic proteins in conjuction with a leader peptide are less active in this reaction, indicating that liposome-bound SecA protein recognizes both leader and mature domains.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Fosfolipídeos/farmacologia , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Cinética , Lipossomos , Modelos Biológicos , Dados de Sequência Molecular , Peptídeos/síntese química , ATPases Translocadoras de Prótons/metabolismo , Canais de Translocação SEC
8.
J Bacteriol ; 125(3): 855-63, 1976 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1254556

RESUMO

Cytidine 5'-diphosphate (CDP)-diglyceride is hydrolyzed to phosphatidic acid and cytidine 5'-monophosphate by a specific membrane-bound enzyme in cell-free extracts of Escherichia coli. The hydrolase can be extracted from the particulate fraction with Triton X-100 and purified 1,000-fold in the presence of this detergent. Several nucleoside disphosphate diglycerides were synthesized to determine the substrate specificity of the hydrolase. CDP-diglyceride was hydrolyzed preferentially, although uridine 5'-diphosphate-diglyceride, guanosine 5'-diphosphate-diglyceride, and adenosine 5'-diphosphate (ADP)-diglyceride were also slowly hydrolyzed. Surprisingly, the purified enzyme did not catalyze detectable cleavage of deoxy-CDP (dCDP)-diglyceride. The liponucleotide pool of E. coli contains dCDP-diglyceride and CDP-diglyceride in approximately equal amounts (Raetz and Kennedy, 1973). Water-soluble nucleoside pyrophosphates, such as CDP-choline, nicotinamide adenine dinucleotide, or adenosine 5'-triphosphate are not attacked by this specific hydrolase. Hydrolysis of CDP-diglyceride is strongly inhibited by adenosine 5'-monophosphate and by ADP-diglyceride.


Assuntos
Hidrolases , Membrana Celular/enzimologia , Sistema Livre de Células , Precipitação Química , Diglicerídeos de Citidina Difosfato/metabolismo , Nucleotídeos de Citosina/biossíntese , Hidrolases/isolamento & purificação , Hidrolases/metabolismo , Hidrólise , Ácidos Fosfatídicos/biossíntese , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA