Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 4750, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30894603

RESUMO

Although structural nuclear pore proteins (nucleoporins) are seemingly required in every cell type to assemble a functional nuclear transport machinery, mutations or deregulation of a subset of them have been associated with specific human hereditary diseases. In particular, previous genetic studies of patients with nephrotic syndrome identified mutations in Nup107 that impaired the expression or the localization of its direct partner at nuclear pores, Nup133. In the present study, we characterized the zebrafish nup133 orthologous gene and its expression pattern during larval development. Using a morpholino-mediated gene knockdown, we show that partial depletion of Nup133 in zebrafish larvae leads to the formation of kidney cysts, a phenotype that can be rescued by co-injection of wild type mRNA. Analysis of different markers for tubular and glomerular development shows that the overall kidney development is not affected by nup133 knockdown. Likewise, no gross defect in nuclear pore complex assembly was observed in these nup133 morphants. On the other hand, nup133 downregulation results in proteinuria and moderate foot process effacement, mimicking some of the abnormalities typically featured by patients with nephrotic syndrome. These data indicate that nup133 is a new gene required for proper glomerular structure and function in zebrafish.


Assuntos
Nefropatias/genética , Glomérulos Renais/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Peixe-Zebra/genética , Animais , Técnicas de Silenciamento de Genes , Nefropatias/patologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Síndrome Nefrótica/etiologia , Proteinúria/etiologia , Peixe-Zebra
2.
Cell Cycle ; 17(17): 2122-2133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30198378

RESUMO

In metazoans, the assembly of kinetochores on centrometric chromatin and the dismantling of nuclear pore complexes are processes that have to be tightly coordinated to ensure the proper assembly of the mitotic spindle and a successful mitosis. It is therefore noteworthy that these two macromolecular assemblies share a subset of constituents. One of these multifaceted components is Cenp-F, a protein implicated in cancer and developmental pathologies. During the cell cycle, Cenp-F localizes in multiple cellular structures including the nuclear envelope in late G2/early prophase and kinetochores throughout mitosis. We recently characterized the molecular determinants of Cenp-F interaction with Nup133, a structural nuclear pore constituent. In parallel with two other independent studies, we further elucidated the mechanisms governing Cenp-F kinetochore recruitment that mainly relies on its interaction with Bub1, with redundant contribution of Cenp-E upon acute microtubule depolymerisation. Here we synthesize the current literature regarding the dual location of Cenp-F at nuclear pores and kinetochores and extend our discussion to the regulation of these NPC and kinetochore localizations by mitotic kinase and spindle microtubules.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Poro Nuclear/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Humanos , Fuso Acromático/metabolismo
3.
Cell Rep ; 23(8): 2443-2454, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29791854

RESUMO

Nup133 belongs to the Y-complex, a key component of the nuclear pore complex (NPC) scaffold. Studies on a null mutation in mice previously revealed that Nup133 is essential for embryonic development but not for mouse embryonic stem cell (mESC) proliferation. Using single-pore detection and average NE-fluorescence intensity, we find that Nup133 is dispensable for interphase and postmitotic NPC scaffold assembly in pluripotent mESCs. However, loss of Nup133 specifically perturbs the formation of the nuclear basket as manifested by the absence of Tpr in about half of the NPCs combined with altered dynamics of Nup153. We further demonstrate that its central domain mediates Nup133's role in assembling Tpr and Nup153 into a properly configured nuclear basket. Our findings thus revisit the role of the Y-complex in pore biogenesis and provide insights into the interplay between NPC scaffold architecture, nuclear basket assembly, and the generation of heterogeneity among NPCs.


Assuntos
Antígenos de Histocompatibilidade Menor/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Animais , Feminino , Imageamento Tridimensional , Interfase , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Domínios Proteicos , Proteínas Proto-Oncogênicas/metabolismo
4.
EMBO Rep ; 19(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632243

RESUMO

Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 ß-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Antígenos de Histocompatibilidade Menor/genética , Mitose , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética
5.
Dev Cell ; 43(2): 157-171.e7, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065307

RESUMO

In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose/fisiologia , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células HeLa , Humanos , Membrana Nuclear/genética , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
6.
Chromosoma ; 125(4): 789-805, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26685999

RESUMO

Nup98 is an important component of the nuclear pore complex (NPC) and also a rare but recurrent target for chromosomal translocation in leukaemogenesis. Nup98 contains multiple cohesive Gly-Leu-Phe-Gly (GLFG) repeats that are critical notably for the formation of intranuclear GLFG bodies. Previous studies have reported the existence of GLFG bodies in cells overexpressing exogenous Nup98 or in a HeLa subline (HeLa-C) expressing an unusual elevated amount of endogenous Nup98. Here, we have analysed the presence of Nup98-containing bodies in several human cell lines. We found that HEp-2, another HeLa subline, contains GLFG bodies that are distinct from those identified in HeLa-C. Rapid amplification of cDNA ends (RACE) revealed that HEp-2 cells express additional truncated forms of Nup98 fused to a non-coding region of chromosome 11q22.1. Cytogenetic analyses using FISH and array-CGH further revealed chromosomal rearrangements that were distinct from those observed in leukaemic cells. Indeed, HEp-2 cells feature a massive amplification of juxtaposed NUP98 and 11q22.1 loci on a chromosome marker derived from chromosome 3. Unexpectedly, minor co-amplifications of NUP98 and 11q22.1 loci were also observed in other HeLa sublines, but on rearranged chromosomes 11. Altogether, this study reveals that distinct genomic rearrangements affecting NUP98 are associated with the formation of GLFG bodies in specific HeLa sublines.


Assuntos
Cromossomos Humanos Par 11/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Sequências Repetitivas de Aminoácidos/genética , Translocação Genética/genética , Células CACO-2 , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Amplificação de Genes/genética , Células HeLa , Células Hep G2 , Humanos , Hibridização in Situ Fluorescente , Leucemia/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
7.
Nucleic Acids Res ; 42(8): 5043-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500206

RESUMO

Assembly of messenger ribonucleoparticles (mRNPs) is a pivotal step in gene expression, but only a few molecular mechanisms contributing to its regulation have been described. Here, through a comprehensive proteomic survey of mRNP assembly, we demonstrate that the SUMO pathway specifically controls the association of the THO complex with mRNPs. We further show that the THO complex, a key player in the interplay between gene expression, mRNA export and genetic stability, is sumoylated on its Hpr1 subunit and that this modification regulates its association with mRNPs. Altered recruitment of the THO complex onto mRNPs in sumoylation-defective mutants does not affect bulk mRNA export or genetic stability, but impairs the expression of acidic stress-induced genes and, consistently, compromises viability in acidic stress conditions. Importantly, inactivation of the nuclear exosome suppresses the phenotypes of the hpr1 non-sumoylatable mutant, showing that SUMO-dependent mRNP assembly is critical to allow a specific subset of mRNPs to escape degradation. This article thus provides the first example of a SUMO-dependent mRNP-assembly event allowing a refined tuning of gene expression, in particular under specific stress conditions.


Assuntos
Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Cisteína Endopeptidases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Expressão Gênica , Proteoma/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Proteína SUMO-1/metabolismo , Estresse Fisiológico/genética , Ubiquitinação
8.
Cell ; 154(6): 1300-13, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034252

RESUMO

Radial glial progenitors (RGPs) are elongated epithelial cells that give rise to neurons, glia, and adult stem cells during brain development. RGP nuclei migrate basally during G1, apically using cytoplasmic dynein during G2, and undergo mitosis at the ventricular surface. By live imaging of in utero electroporated rat brain, we find that two distinct G2-specific mechanisms for dynein nuclear pore recruitment are essential for apical nuclear migration. The "RanBP2-BicD2" and "Nup133-CENP-F" pathways act sequentially, with Nup133 or CENP-F RNAi arresting nuclei close to the ventricular surface in a premitotic state. Forced targeting of dynein to the nuclear envelope rescues nuclear migration and cell-cycle progression, demonstrating that apical nuclear migration is not simply correlated with cell-cycle progression from G2 to mitosis, but rather, is a required event. These results reveal that cell-cycle control of apical nuclear migration occurs by motor protein recruitment and identify a role for nucleus- and centrosome-associated forces in mitotic entry. PAPERCLIP:


Assuntos
Encéfalo/embriologia , Núcleo Celular/metabolismo , Dineínas/metabolismo , Mitose , Células-Tronco Neurais/citologia , Poro Nuclear/metabolismo , Animais , Encéfalo/citologia , Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Embrião de Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos , Células-Tronco Neurais/metabolismo , Neurogênese , Ratos
9.
J Cell Biol ; 192(5): 855-71, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21383080

RESUMO

Centrosomes are closely associated with the nuclear envelope (NE) throughout the cell cycle and this association is maintained in prophase when they separate to establish the future mitotic spindle. At this stage, the kinetochore constituents CENP-F, NudE, NudEL, dynein, and dynactin accumulate at the NE. We demonstrate here that the N-terminal domain of the nuclear pore complex (NPC) protein Nup133, although largely dispensable for NPC assembly, is required for efficient anchoring of the dynein/dynactin complex to the NE in prophase. Nup133 exerts this function through an interaction network via CENP-F and NudE/EL. We show that this molecular chain is critical for maintaining centrosome association with the NE at mitotic entry and contributes to this process without interfering with the previously described RanBP2-BICD2-dependent pathway of centrosome anchoring. Finally, our study reveals that tethering of centrosomes to the nuclear surface at the G2/M transition contributes, along with other cellular mechanisms, to early stages of bipolar spindle assembly.


Assuntos
Centrossomo/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Poro Nuclear/metabolismo , Prófase , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Linhagem Celular Tumoral , Polaridade Celular , Centrossomo/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Complexo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Espaço Intranuclear/metabolismo , Espaço Intranuclear/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor , Membrana Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Fuso Acromático/metabolismo
10.
Mol Biol Cell ; 18(8): 2912-23, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17538013

RESUMO

Increasing evidences suggest that nuclear pore complexes (NPCs) control different aspects of nuclear metabolism, including transcription, nuclear organization, and DNA repair. We previously established that the Nup84 complex, a major NPC building block, is part of a genetic network involved in DNA repair. Here, we show that double-strand break (DSB) appearance is linked to a shared function of the Nup84 and the Nup60/Mlp1-2 complexes. Mutants within these complexes exhibit similar genetic interactions and alteration in DNA repair processes as mutants of the SUMO-protease Ulp1. Consistently, these nucleoporins are required for maintenance of proper Ulp1 levels at NPCs and for the establishment of the appropriate sumoylation of several cellular proteins, including the DNA repair factor Yku70. Moreover, restoration of nuclear envelope-associated Ulp1 in nucleoporin mutants reestablishes proper sumoylation patterns and suppresses DSB accumulation and genetic interactions with DNA repair genes. Our results thus provide a molecular mechanism that underlies the connection between NPC and genome stability.


Assuntos
Cisteína Endopeptidases/metabolismo , Dano ao DNA , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Estabilidade Enzimática , Carioferinas/metabolismo , Mutação/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Transporte Proteico , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Genome Res ; 15(3): 376-84, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15710747

RESUMO

The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against high-complexity fly cDNA libraries. More than 2300 protein-protein interactions (PPI) were identified, of which 710 are of high confidence. The computation of a reliability score for each protein-protein interaction and the systematic identification of the interacting domain combined with a prediction of structural/functional motifs allow the elaboration of known complexes and the identification of new ones. The full data set can be visualized using a graphical Web interface, the PIMRider (http://pim.hybrigenics.com), and is also accessible in the PSI standard Molecular Interaction data format. Our fly Protein Interaction Map (PIM) is surprisingly different from the one recently proposed by Giot et al. with little overlap between the two data sets. Analysis of the differences in data sets and methods suggests alternative strategies to enhance the accuracy and comprehensiveness of the post-genomic generation of broad-scale protein interaction maps.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animais , Sequência de Bases , DNA Complementar/genética , Proteínas de Drosophila/química , Biblioteca Gênica , Genes de Insetos , Genes ras , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade da Espécie , Técnicas do Sistema de Duplo-Híbrido
12.
Nat Cell Biol ; 6(11): 1114-21, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502822

RESUMO

Most cellular activities are executed by multi-protein complexes that form the basic functional modules of their molecular machinery. Proteomic approaches can provide an evermore detailed picture of their composition, but do not reveal how these machines are organized dynamically to accomplish their biological function. Here, we present a method to determine the dissociation rates of protein subunits from complexes that have a traceable localization inside single living cells. As a case study, we systematically analysed the dynamic organization of vertebrate nuclear pore complexes (NPCs), large supramolecular complexes of about 30 different polypeptides. NPC components exhibited a wide range of residence times covering five orders of magnitude from seconds to days. We found the central parts of the NPC to be very stable, consistent with a function as a structural scaffold, whereas more peripheral components exhibited more dynamic behaviour, suggesting adaptor as well as regulatory functions. The presented strategy can be applied to many multi-protein complexes and will help to characterize the dynamic behaviour of complex networks of proteins in live cells.


Assuntos
Poro Nuclear/ultraestrutura , Células Cultivadas , Cinética , Plasmídeos , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA