Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 567(7746): 113-117, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787442

RESUMO

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Assuntos
Centrossomo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Microtúbulos/metabolismo , Neurogênese , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Movimento Celular , Células Cultivadas , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Junções Intercelulares/metabolismo , Interfase , Ventrículos Laterais/anatomia & histologia , Glândulas Mamárias Animais/citologia , Camundongos , Tamanho do Órgão , Organoides/citologia
2.
Genes Dev ; 25(24): 2631-43, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22190459

RESUMO

ß-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous ß-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant ß-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/ß-catenin signaling in dorsal neural tube development. While loss of ß-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/ß-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of ß-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , beta Catenina/genética , beta Catenina/metabolismo , Junções Aderentes/genética , Animais , Células Epiteliais/citologia , Células Epiteliais/patologia , Gastrulação/genética , Camundongos , Camundongos Endogâmicos , Mutação , Transdução de Sinais/genética , Medula Espinal/citologia , Medula Espinal/embriologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética
3.
Cell Stem Cell ; 2(5): 472-83, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18462697

RESUMO

Regulating the choice between neural stem cell maintenance versus differentiation determines growth and size of the developing brain. Here we identify TGF-beta signaling as a crucial factor controlling these processes. At early developmental stages, TGF-beta signal activity is localized close to the ventricular surface of the neuroepithelium. In the midbrain, but not in the forebrain, Tgfbr2 ablation results in ectopic expression of Wnt1/beta-catenin and FGF8, activation of Wnt target genes, and increased proliferation and horizontal expansion of neuroepithelial cells due to shortened cell-cycle length and decreased cell-cycle exit. Consistent with this phenotype, self-renewal of mutant neuroepithelial stem cells is enhanced in the presence of FGF and requires Wnt signaling. Moreover, TGF-beta signal activation counteracts Wnt-induced proliferation of midbrain neuroepithelial cells. Thus, TGF-beta signaling controls the size of a specific brain area, the dorsal midbrain, by antagonizing canonical Wnt signaling and negatively regulating self-renewal of neuroepithelial stem cells.


Assuntos
Diferenciação Celular , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Proteína Wnt1/fisiologia , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Humanos , Mesencéfalo/embriologia , Camundongos , Células Neuroepiteliais/citologia , Células Neuroepiteliais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA