Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 27(3): 455-465, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552425

RESUMO

X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants.


Assuntos
População/genética , Inativação do Cromossomo X , Proteínas de Ligação ao Cálcio/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Glicoproteínas de Membrana/genética , Países Baixos , Polimorfismo de Nucleotídeo Único , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Septinas/genética
2.
J Invest Dermatol ; 138(4): 826-835, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29179949

RESUMO

Systemic sclerosis is an autoimmune disease characterized by fibrosis of skin and multiple organs of which the pathogenesis is poorly understood. We studied differentially expressed coding and non-coding genes in relation to systemic sclerosis pathogenesis with a specific focus on antisense non-coding RNAs. Skin biopsy-derived RNAs from 14 early systemic sclerosis patients and six healthy individuals were sequenced with ion-torrent and analyzed using DEseq2. Overall, 4,901 genes with a fold change >1.5 and a false discovery rate <5% were detected in patients versus controls. Upregulated genes clustered in immunologic, cell adhesion, and keratin-related processes. Interestingly, 676 deregulated non-coding genes were detected, 257 of which were classified as antisense genes. Sense genes expressed opposite of these antisense genes were also deregulated in 42% of the observed sense-antisense gene pairs. The majority of the antisense genes had a similar effect sizes in an independent North American dataset with three genes (CTBP1-AS2, OTUD6B-AS1, and AGAP2-AS1) exceeding the study-wide Bonferroni-corrected P-value (PBonf < 0.0023, Pcombined = 1.1 × 10-9, 1.4 × 10-8, 1.7 × 10-6, respectively). In this study, we highlight that together with coding genes, (antisense) long non-coding RNAs are deregulated in skin tissue of systemic sclerosis patients suggesting a novel class of genes involved in pathogenesis of systemic sclerosis.


Assuntos
RNA Longo não Codificante/genética , Escleroderma Sistêmico/genética , Pele/metabolismo , Regulação para Cima , Células Cultivadas , Humanos , RNA Longo não Codificante/biossíntese , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Pele/patologia , Fatores de Transcrição , Ativação Transcricional
3.
Drug Alcohol Depend ; 171: 117-121, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28086176

RESUMO

BACKGROUND AND AIM: Previous studies have shown a relationship between schizophrenia and cannabis use. As both traits are substantially heritable, a shared genetic liability could explain the association. We use two recently developed genomics methods to investigate the genetic overlap between schizophrenia and cannabis use. METHODS: Firstly, polygenic risk scores for schizophrenia were created based on summary statistics from the largest schizophrenia genome-wide association (GWA) meta-analysis to date. We analysed the association between these schizophrenia polygenic scores and multiple cannabis use phenotypes (lifetime use, regular use, age at initiation, and quantity and frequency of use) in a sample of 6,931 individuals. Secondly, we applied LD-score regression to the GWA summary statistics of schizophrenia and lifetime cannabis use to calculate the genome-wide genetic correlation. RESULTS: Polygenic risk scores for schizophrenia were significantly (α<0.05) associated with five of the eight cannabis use phenotypes, including lifetime use, regular use, and quantity of use, with risk scores explaining up to 0.5% of the variance. Associations were not significant for age at initiation of use and two measures of frequency of use analyzed in lifetime users only, potentially because of reduced power due to a smaller sample size. The LD-score regression revealed a significant genetic correlation of rg=0.22 (SE=0.07, p=0.003) between schizophrenia and lifetime cannabis use. CONCLUSIONS: Common genetic variants underlying schizophrenia and lifetime cannabis use are partly overlapping. Individuals with a stronger genetic predisposition to schizophrenia are more likely to initiate cannabis use, use cannabis more regularly, and consume more cannabis over their lifetime.


Assuntos
Fumar Maconha/epidemiologia , Fumar Maconha/genética , Herança Multifatorial/genética , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças em Gêmeos/epidemiologia , Doenças em Gêmeos/genética , Feminino , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Fenótipo , Sistema de Registros , Adulto Jovem
4.
Diabetes ; 64(5): 1841-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712996

RESUMO

Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.


Assuntos
Adiposidade/fisiologia , Envelhecimento/fisiologia , Doenças Cardiovasculares/metabolismo , Pressão Sanguínea , Proteína C-Reativa/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Feminino , Humanos , Insulina/sangue , Interleucina-6 , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Triglicerídeos/sangue , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA